Сопромат

Механика

Детали машин

В Word'е

Качественно

Быстро

Мещерский И.В. Сборник задач по теоретической механике. Статика твердого тела. Кинематика. Динамика

Образцы оформления здесь

 

12.8 При отходе от станции скорость поезда возрастает равномерно и достигает величины 72 км/ч через 3 мин после отхода; путь расположен на закруглен...
12.8 Пример При отходе от станции скорость поезда возрастает равномерно и достигает величины 72 км/ч через 3 мин после отхода; путь расположен на закруглении радиуса 800 м. Определить касательное, нормальное и полное ускорения поезда через 2 мин после момента отхода от станции.
12.9 Пример Поезд движется равнозамедленно по дуге окружности радиуса R=800 м и проходит путь s=800 м, имея начальную скорость v0=54 км/ч и конечную v=18 км/ч. Определить полное ускорение поезда в начале и в конце дуги, а также время движения по этой дуге.
12.10 Пример Закругление трамвайного пути состоит из двух дуг радиусом ρ1=300 м и ρ2=400 м. Центральные углы α12=60°. Построить график нормального ускорения вагона, идущего по закруглению со скоростью v=36 км/ч.
12.11 Пример Точка движется по дуге окружности радиуса R=20 см. Закон ее движения по траектории: s=20 sin πt (t в секундах, s в сантиметрах). Найти величину и направление скорости, касательное, нормальное и полное ускорения точки в момент t=5 c. Построить также графики скорости, касательного и нормального ускорений.
12.12 Пример Прямолинейное движение точки происходит по закону s=g(at+e-at)/a2, где a и g постоянные величины. Найти начальную скорость точки, а также определить ее ускорение в функции от скорости.
12.13 Пример Движение точки задано уравнениями x = 10 cos (2πt/5), y = 10 sin (2πt/5) (x, y в сантиметрах, t в секундах). Найти траекторию точки, величину и направление скорости, а также величину и направление ускорения.
12.14 Пример Уравнения движения пальца кривошипа дизеля в период пуска имеют вид x=75 cos 4t2, y=75 sin 4t2 (x, y в сантиметрах, t в секундах). Найти скорость, касательное и нормальное ускорения пальца.

12.15 Движение точки задано уравнениями x = a(ekt + e-kt), y = a(ekt - e-kt), где a и k заданные постоянные величины. Найти уравнение траектории, ск...
12.15 Пример Движение точки задано уравнениями x = a(ekt + e-kt), y = a(ekt - e-kt), где a и k заданные постоянные величины. Найти уравнение траектории, скорость и ускорение точки как функции радиус-вектора r=√(x2+y2).
12.16 Пример Найти радиус кривизны при x=y=0 траектории точки, описывающей фигуру Лиссажу согласно уравнениям x = -a sin 2ωt, y = -a sin ωt.
12.17 Пример Найти величину и направление ускорения, а также радиус кривизны траектории точки колеса, катящегося без скольжения по горизонтальной оси Ox, если точка описывает циклоиду согласно уравнениям x = 20t - sin 20t, y = 1 - cos 20t (t в секундах, x, y в метрах). Определить также значение радиуса кривизны ρ при t=0.
12.18 Пример Найти траекторию точки M шатуна кривошипно-ползунного механизма, если r=l=60 см, MB=l/3, φ=4πt (t в секундах), а также определить скорость, ускорение и радиус кривизны траектории точки в момент, когда φ=0.
12.19 Пример На проволочной окружности радиуса 10 см надето колечко M; через него проходит стержень OA, который равномерно вращается вокруг точки O, лежащей на той же окружности; угловая скорость стержня такова, что он поворачивается на прямой угол за 5 c. Определить скорость v и ускорение w колечка.
12.20 Пример В условиях предыдущей задачи определить скорость и ускорение колечка M как функцию угла φ, если угловое ускорение стержня OM равно k cos φ (k=const). В начальный момент при t=0 угол φ и его скорость равнялись нулю, радиус окружности r, 0 ≤ φ ≤ π.

12.21 Движение снаряда задано уравнениями x = v0t cos α0, y = v0t sin α0 - gt2/2, где v0 и α0 постоянные величины. Найти радиус кривизны траектории ...
12.21 Пример Движение снаряда задано уравнениями x = v0t cos α0, y = v0t sin α0 - gt2/2, где v0 и α0 постоянные величины. Найти радиус кривизны траектории при t=0 и в момент падения на землю.
12.22 Пример Снаряд движется в вертикальной плоскости согласно уравнениям x=300t, y=400t-5t2 (t в секундах, x, y в метрах). Найти: 1) скорость и ускорение в начальный момент, 2) высоту и дальность обстрела, 3) радиус кривизны траектории в начальной и в наивысшей точках.
12.23 Пример Из орудия береговой артиллерии с высоты h=30 м над уровнем моря произведен выстрел под углом α0=45° к горизонту с начальной скоростью снаряда v0=1000 м/с. Определить, на каком расстоянии от орудия снаряд попадет в цель, находящуюся на уровне моря. Сопротивлением воздуха пренебречь.
12.24 Пример Найти касательное и нормальное ускорения точки, движение которой выражается уравнениями x = αt, y = βt - gt2/2.
12.25 Пример Точка движется по винтовой линии согласно уравнениям x=2 cos 4t, y=2 sin 4t, z=2t, причем за единицу длины взят метр. Определить радиус кривизны ρ траектории.
12.26 Пример Движение точки задано в полярных координатах уравнениями r=aekt и φ=kt, где a и k заданные постоянные величины. Найти уравнение траектории, скорость, ускорение и радиус кривизны траектории точки как функции ее радиус-вектора r.
12.27 Пример Движение точки задано уравнениями x = 2t, y = t2 (t в секундах, x и y в сантиметрах). Определить величины и направления скорости и ускорения точки в момент времени t=1 c.

12.28 Построить траекторию движения точки, годограф скорости и определить радиус кривизны траектории в начальный момент, если точка движется согласн...
12.28 Пример Построить траекторию движения точки, годограф скорости и определить радиус кривизны траектории в начальный момент, если точка движется согласно уравнениям x = 4t, y = t3 (t в секундах, x и y в сантиметрах).
12.29 Пример Кривошип O1C длиной a/2 вращается с постоянной угловой скоростью ω вокруг оси O1. В точке С с кривошипом шарнирно связана линейка AB, проходящая все время через качающуюся муфту O, находящуюся на расстоянии a/2 от оси вращения O1. Приняв точку O за полюс, найти в полярных координатах уравнения движения точки M линейки, отстоящей от шарнира C на расстоянии a, ее траекторию, скорость и ускорение (в начальный момент угол φ= COO1=0).
12.30 Пример В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0.
12.31 Пример Конец A стержня AB перемещается по прямолинейной направляющей CD с постоянной скоростью vA. Стержень AB все время проходит через качающуюся муфту O, отстоящую от направляющей CD на расстоянии a. Приняв точку O за полюс, найти в полярных координатах r, φ скорость и ускорение точки M, находящейся на линейке на расстоянии b от ползуна A.
12.32 Пример Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r = a, φ = kt, z = νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии.

12.33 Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют ...
12.33 Пример Точка M движется по линии пересечения сферы x2+y2+z2=R2 и цилиндра (x-R/2)2+y2=R2/4. Уравнения движения точки в сферических координатах имеют вид (см. задачу 10.21) r = R, φ = kt/2, θ = kt/2. Найти проекции и модуль ускорения точки в сферических координатах.
12.34 Пример Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ долгота, φ широта места плавания), модуль ускорения и радиус кривизны локсодромии.
12.35 Пример Выразить декартовы координаты точки через тороидальные координаты r=CM, ψ и φ и определить коэффициенты Ляме (Ламе).
12.36 Пример Движение точки задано в тороидальной системе координат r, ψ и φ. Найти проекции скорости и ускорения точки на оси этой системы отсчета.

12.37 Точка движется по винтовой линии, намотанной на тор, по закону r = R = const, ψ = ωt, φ = kt. Определить проекции скорости и ускорения точки в...
12.37 Пример Точка движется по винтовой линии, намотанной на тор, по закону r = R = const, ψ = ωt, φ = kt. Определить проекции скорости и ускорения точки в тороидальной системе координат (ω=const, k=const).
12.38 Пример Механизм робота-манипулятора состоит из поворотного устройства 1, колонны для вертикального перемещения 2 и выдвигающейся руки со схватом 3. Найти скорость и ускорение центра схвата при заданных φ(t), z(t), r(t).
12.39 Пример Вертикальная колонна, несущая руку робота-манипулятора, может поворачиваться на угол φ. Рука со схватом поворачивается на угол ϑ и выдвигается на расстояние r. Найти скорость и ускорение центра схвата.
12.40 Пример Механизм робота-манипулятора состоит из поворотного устройства с вертикальной осью (угол поворота φ) и двух звеньев, расположенных в вертикальной плоскости (углы поворота звеньев ϑ1и ϑ2). Найти скорость центра схвата при переносе груза.

13.1 Определить угловую скорость: 1) секундной стрелки часов, 2) минутной стрелки часов, 3) часовой стрелки часов, 4) вращения Земли вокруг своей ос...
13.1 Пример Определить угловую скорость: 1) секундной стрелки часов, 2) минутной стрелки часов, 3) часовой стрелки часов, 4) вращения Земли вокруг своей оси, считая, что Земля делает один оборот за 24 часа, 5) паровой турбины Лаваля, делающей 15000 об/мин.
13.2 Пример Написать уравнение вращения диска паровой турбины при пуске в ход, если известно, что угол поворота пропорционален кубу времени и при t=3 с угловая скорость диска равна ω=27π рад/с.
13.3 Пример Маятник центробежного регулятора, вращающийся вокруг вертикальной оси AB, делает 120 об/мин. В начальный момент угол поворота был равен π/6 рад. Найти угол поворота и угловое перемещение маятника за время t=1/2 c.
13.4 Пример Тело, начиная вращаться равноускоренно из состояния покоя, делает 3600 оборотов в первые 2 минуты. Определить угловое ускорение.
13.5 Пример Вал начинает вращаться равноускоренно из состояния покоя; в первые 5 с он совершает 12,5 оборота. Какова его угловая скорость по истечении этих 5 с?
13.6 Пример Маховое колесо начинает вращаться из состояния покоя равноускоренно; через 10 мин после начала движения оно имеет угловую скорость, равную 4π рад/с. Сколько оборотов сделало колесо за эти 10 мин?
13.7 Пример Колесо, имеющее неподвижную ось, получило начальную угловую скорость 2π рад/с; сделав 10 оборотов, оно вследствие трения в подшипниках остановилось. Определить угловое ускорение ε колеса, считая его постоянным.

13.8 С момента выключения мотора пропеллер самолета, вращавшийся с угловой скоростью, равной 40π рад/с, сделал до остановки 80 оборотов. Сколько вре...
13.8 Пример С момента выключения мотора пропеллер самолета, вращавшийся с угловой скоростью, равной 40π рад/с, сделал до остановки 80 оборотов. Сколько времени прошло с момента выключения мотора до остановки, если считать вращение пропеллера равнозамедленным?
13.9 Пример Тело совершает колебания около неподвижной оси, причем угол поворота выражается уравнением φ = 20° sin ψ, где угол ψ выражен в угловых градусах зависимостью ψ=(2t)°, причем t обозначает секунды. Определить угловую скорость тела в момент t=0, ближайшие моменты t1 и t2, в которые изменяется направление вращения, и период колебания T.
13.10 Пример Часовой балансир совершает крутильные гармонические колебания с периодом T=1/2 c. Наибольший угол отклонения точки обода балансира от положения равновесия α=π/2 рад. Найти угловую скорость и угловое ускорение баланса через 2 с после момента, когда балансир проходит положение равновесия.
13.11 Пример Маятник колеблется в вертикальной плоскости около неподвижной горизонтальной оси O. Выйдя в начальный момент из положения равновесия, он достигает наибольшего отклонения α=π/16 рад через 2/3 c. 1) Написать закон колебаний маятника, считая, что он совершает гармонические колебания. 2) В каком положении маятник будет иметь наибольшую угловую скорость и чему она равна?
13.12 Пример Определить скорость v и ускорение w точки, находящейся на поверхности Земли в Ленинграде, принимая во внимание только вращение Земли вокруг своей оси; широта Ленинграда 60°, радиус Земли 6370 км.

13.13 Маховое колесо радиуса 0,5 м вращается равномерно вокруг своей оси; скорость точек, лежащих на его ободе, равна 2 м/с. Сколько оборотов в мину...
13.13 Пример Маховое колесо радиуса 0,5 м вращается равномерно вокруг своей оси; скорость точек, лежащих на его ободе, равна 2 м/с. Сколько оборотов в минуту делает колесо?
13.14 Пример Точка A шкива, лежащая на его ободе, движется со скоростью 50 см/с, а некоторая точка B, взятая на одном радиусе с точкой A, движется со скоростью 10 см/с; расстояние AB=20 см. Определить угловую скорость ω и диаметр шкива.
13.15 Пример Маховое колесо радиуса R=2 м вращается равноускоренно из состояния покоя; через t=10 с точки, лежащие на ободе, обладают линейной скоростью v=100 м/с. Найти скорость, нормальное и касательное ускорения точек обода колеса для момента t=15 c.
13.16 Пример Найти горизонтальную скорость v, которую нужно сообщить телу, находящемуся на экваторе, для того чтобы оно, двигаясь равномерно вокруг Земли по экватору в особых направляющих, имело ускорение свободного падения. Определить также время T, по истечении которого тело вернется в первоначальное положение. Радиус Земли R=637*106 см, а ускорение силы тяжести на экваторе g=978 см/с2.
13.17 Пример Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение ее в данный момент wτ=10*√3 м/с2. Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии r=0,5 м. Радиус махового колеса R=1 м.
13.18 Пример Вал радиуса R=10 см приводится во вращение гирей P, привешенной к нему на нити. Движение гири выражается уравнением x=100t2, где x расстояние гири от места схода нити с поверхности вала, выраженное в сантиметрах, t время в секундах. Определить угловую скорость ω и угловое ускорение ε вала, а также полное ускорение w точки на поверхности вала в момент t.

13.19 Решить предыдущую задачу в общем виде, выразив ускорение точек обода колеса через пройденное гирей расстояние x, радиус колеса R и ускорение г...
13.19 Пример Решить предыдущую задачу в общем виде, выразив ускорение точек обода колеса через пройденное гирей расстояние x, радиус колеса R и ускорение гири x =w0=const.
13.20 Пример Стрелка гальванометра длины 3 см колеблется вокруг неподвижной оси по закону φ=φ0 sin kt. Определить ускорение конца стрелки в ее среднем и крайних положениях, а также моменты времени, при которых угловая скорость ω и угловое ускорение ε обращаются в нуль, если период колебаний равен 0,4 c, а угловая амплитуда φ0=π/30.
14.1 Пример Угловая скорость зубчатого колеса I диаметра D1=360 мм равна 10π/3 рад/с. Чему должен равняться диаметр зубчатого колеса II, находящегося с колесом I во внутреннем зацеплении, угловая скорость которого в три раза больше угловой скорости колеса I?
14.2 Пример Редуктор скорости, служащий для замедления вращения и передающий вращение вала I валу II, состоит из четырех шестерен с соответствующим числом зубцов: z1=10, z2=60, z3=12, z4=70. Определить передаточное отношение механизма.
14.3 Пример Станок со шкивом A приводится в движение из состояния покоя бесконечным ремнем от шкива B электромотора; радиусы шкивов: r1=75 см, r2=30 см; после пуска в ход электромотора его угловое ускорение равно 0,4π рад/с2. Пренебрегая скольжением ремня по шкивам, определить через сколько времени угловая скорость станка будет равна 10π рад/с.
14.4 Пример В механизме стрелочного индикатора движение от рейки мерительного штифта 1 передается шестерне 2, на оси которой укреплено зубчатое колесо 3, сцепляющееся с шестерней 4, несущей стрелку. Определить угловую скорость стрелки, если движение штифта задано уравнением x=a sin kt и радиусы зубчатых колес соответственно равны r2, r3 и r4

14.5 В механизме домкрата при вращении рукоятки A начинают вращаться шестерни 1, 2, 3, 4 и 5, которые приводят в движение зубчатую рейку B домкрата....
14.5 Пример В механизме домкрата при вращении рукоятки A начинают вращаться шестерни 1, 2, 3, 4 и 5, которые приводят в движение зубчатую рейку B домкрата. Определить скорость последней, если рукоятка A вращается с угловой скоростью, равной π рад/с. Числа зубцов шестерен: z1=6, z2=24, z3=8, z4=32; радиус пятой шестерни r5=4 см.
14.6 Пример Для получения периодически изменяющихся угловых скоростей сцеплены два одинаковых эллиптических зубчатых колеса, из которых одно вращается равномерно вокруг оси O с угловой скоростью ω=9π рад/с, а другое приводится первым во вращательное движение вокруг оси O1. Оси O и O1 параллельны и проходят через фокусы эллипсов. Расстояние OO1 равно 50 см, полуоси эллипсов 25 и 15 см. Определить наименьшую и наибольшую угловые скорости колеса O1.
14.7 Пример Вывести закон передачи вращения пары эллиптических зубчатых колес с полуосями a и b. Угловая скорость колеса I ω1=const. Расстояние между осями O1O2=2a, φ угол, образованный прямой, соединяющей оси вращения, и большой осью эллиптического колеса I. Оси проходят через фокусы эллипсов.

14.8 Найти наибольшую и наименьшую угловые скорости овального колеса O2, сцепленного с колесом O1, угловая скорость которого равна 8π рад/с. Оси вра...
14.8 Пример Найти наибольшую и наименьшую угловые скорости овального колеса O2, сцепленного с колесом O1, угловая скорость которого равна 8π рад/с. Оси вращения колес находятся в центрах овалов. Расстояние между осями равно 50 см. Полуоси овалов равны 40 и 10 см.
14.8 Пример Определить, через какой промежуток времени зубчатое коническое колесо O1 радиуса r1=10 см будет иметь угловую скорость, равную 144π рад/с, если оно приводится во вращение из состояния покоя таким же колесом O2 радиуса r2=15 см, вращающимся равноускоренно с угловым ускорением 4π рад/с2.
14.8 Пример Ведущий вал I фрикционной передачи вращается с угловой скоростью ω=20π рад/с и на ходу передвигается (направление указано стрелкой) так, что расстояние d меняется по закону d=(10-0,5t) см (t в секундах). Определить: 1) угловое ускорение вала II как функцию расстояния d; 2) ускорение точки на ободе колеса B в момент, когда d=r, даны радиусы фрикционных колес: r=5 см, R=15 см.
14.8 Пример Найти закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма OAB, если длины шатуна и кривошипа одинаковы: AB=OA=r, а вращение кривошипа OA вокруг вала O равномерно: ω=ω0. Ось x направлена по направляющей ползуна. Начало отсчета расстояний в центре O кривошипа.

14.12 Определить закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма, если кривошип OA вращается с постоянной угловой ско...
14.12 Пример Определить закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма, если кривошип OA вращается с постоянной угловой скоростью ω0. Длина кривошипа OA=r, длина шатуна AB=l. Ось Ox направлена по направляющей ползуна. Начало отсчета в центре O кривошипа. Отношение r/l=λ следует считать весьма малым (λ<<1); α=ω0t.
14.13 Пример Найти закон движения стержня, если диаметр эксцентрика d=2r, а ось вращения O находится от оси диска C на расстоянии OC=a, ось Ox направлена по стержню, начало отсчета на оси вращения, a/r=λ.
14.14 Пример Написать уравнение движения поршня нецентрального кривошипно-ползунного механизма. Расстояние от оси вращения кривошипа до направляющей линейки h, длина кривошипа r, длина шатуна l; ось Cx направлена по направляющей ползуна. Начало отсчета расстояний в крайнем правом положении ползуна; l/r=λ, h/r=k, φ=ω0t.
14.15 Пример Кулак, равномерно вращаясь вокруг оси O, создает равномерное возвратно-поступательное движение стержня AB. Время одного полного оборота кулака 8 c, уравнения движения стержня в течение этого времени имеют вид (x в сантиметрах, t в секундах) x = 30 + 5t, 0 ≤ t ≤ 4, x = 70 - 5t, 4 ≤ t ≤ 8. Определить уравнения контура кулака и построить график движения стержня.

14.16 Найти закон движения и построить график возвратно-поступательного движения стержня AB, если задано уравнение профиля кулака r = (20 + 15φ/π) с...
114.16 Пример Найти закон движения и построить график возвратно-поступательного движения стержня AB, если задано уравнение профиля кулака r = (20 + 15φ/π) см, 0 < φ < 2π. Кулак равномерно вращается с угловой скоростью, равной 2π/3 рад/с.
114.17 Пример Написать уравнение контура кулака, у которого полный ход стержня h=20 см соответствовал бы одной трети оборота, причем перемещения стержня должны быть в это время пропорциональны углу поворота. В течение следующей трети оборота стержень должен оставаться неподвижным, и, наконец, на протяжении последней трети он должен совершать обратный ход при тех же условиях, что и на первой трети. Наименьшее расстояние конца стержня от центра кулака равно 70 см.

14.18 Найти, на какую длину опускается стержень, опирающийся своим концом о круговой контур радиуса r=30 см кулака, движущегося возвратно-поступател...
14.18 Пример Найти, на какую длину опускается стержень, опирающийся своим концом о круговой контур радиуса r=30 см кулака, движущегося возвратно-поступательно со скоростью v=5 см/с. Время опускания стержня t=3 c. В начальный момент стержень находится в наивысшем положении.
14.18 Пример Найти ускорение кругового поступательного движущегося кулака, если при его равноускоренном движении без начальной скорости стержень опустился за 4 с из наивысшего положения на h=4 см. Радиус кругового контура кулака r=10 см. (См. рисунок к задаче 14.18.)
14.18 Пример Линейка эллипсографа приводится в движение кривошипом OC, вращающимся с постоянной угловой скоростью ω0 вокруг оси O. Приняв ползун B за полюс, написать уравнения плоского движения линейки эллипсографа, если OC=BC=AC=r. В начальный момент линейка AB была расположена горизонтально.
14.18 Пример Колесо радиуса R катится без скольжения по горизонтальной прямой. Скорость центра C колеса постоянная и равна v. Определить уравнения движения колеса, если в начальный момент ось y , жестко связанная с колесом, была вертикальна, а неподвижная ось y проходила в это время через центр C колеса. За полюс принять точку C.

15.3 Шестеренка радиуса r, катящаяся по неподвижной шестеренке радиуса R, приводится в движение кривошипом OA, вращающимся равноускоренно с угловым ...
15.3 Пример Шестеренка радиуса r, катящаяся по неподвижной шестеренке радиуса R, приводится в движение кривошипом OA, вращающимся равноускоренно с угловым ускорением ε0 вокруг оси O неподвижной шестеренки. Составить уравнения движения подвижной шестеренки, приняв за полюс ее центр A, если при t=0 угловая скорость кривошипа ω0=0 и начальный угол поворота φ0=0.
15.4 Пример Шестеренка радиуса r, катящаяся внутри неподвижной шестеренки радиуса R, приводится в движение кривошипом OA, вращающимся равномерно вокруг оси O неподвижной шестеренки с угловой скоростью ω0. При t=0 угол φ0=0. Составить уравнения движения подвижной шестеренки, приняв ее центр A за полюс.
15.5 Пример Найти уравнения движения шатуна, если кривошип вращается равномерно; за полюс взять точку A на оси пальца кривошипа; r длина кривошипа, l длина шатуна, ω0 угловая скорость кривошипа. При t=0 угол α=0.

15.6 Муфты A и B, скользящие вдоль прямолинейных направляющих, соединены стержнем AB длины l. Муфта A движется с постоянной скоростью vA. Написать у...
15.6 Пример Муфты A и B, скользящие вдоль прямолинейных направляющих, соединены стержнем AB длины l. Муфта A движется с постоянной скоростью vA. Написать уравнения движения стержня AB, предполагая, что муфта A начала двигаться от точки O. За полюс принять точку A. Угол BOA равен π-α.
15.7 Пример Конец A стержня AB скользит по прямолинейной направляющей с постоянной скоростью v, причем стержень при движении опирается на штифт D. Написать уравнения движения стержня и его конца B. Длина стержня равна l, превышение штифта D над прямолинейной направляющей равно H. В начале движения конец стержня A совпадал с точкой O началом неподвижной системы координат; OM=a. За полюс принять точку A.
15.8 Пример Кривошип O1A длины a/2 вращается с постоянной угловой скоростью ω. С кривошипом в точке A шарнирно соединен стержень AB, проходящий все время через качающуюся муфту O, причем OO1=a/2. Найти уравнения движения стержня AB и траекторию (в полярных и декартовых координатах) точки M, находящейся на стержне на расстоянии a от шарнира A. За полюс принять точку A.

15.9 Кривошип OA антипараллелограмма OABO1, поставленного на большое звено OO1, равномерно вращается с угловой скоростью ω. Приняв за полюс точку A,...
15.9 Пример Кривошип OA антипараллелограмма OABO1, поставленного на большое звено OO1, равномерно вращается с угловой скоростью ω. Приняв за полюс точку A, составить уравнения движения звена AB, если OA=O1B=a и OO1=AB=b (a < b); в начальный момент кривошип OA был направлен по OO1.
15.10 Пример Кривошип OA антипараллелограмма OABO1, поставленного на малое звено OO1, равномерно вращается с угловой скоростью ω. Приняв за полюс точку A, составить уравнения движения звена AB, если OA=O1B=a и OO1=AB=b (a>b); в начальный момент кривошип OA был направлен по OO1.
16.1 Пример Направив ось перпендикулярно скорости любой из точек плоской фигуры, показать, что проекции на эту ось скоростей всех лежащих на ней точек равны нулю.
16.2 Пример Колесо катится по наклонной плоскости, образующей угол 30° с горизонтом. Центр O колеса движется по закону xO=10t2 см, где x ось, направленная параллельно наклонной плоскости. К центру O колеса подвешен стержень OA=36 см, качающийся вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, по закону φ=(π/3)sin(πt/6) рад. Найти скорость конца A стержня AO в момент времени t=1 c.
16.3 Пример При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC=(100-4,9t2) м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью ω=π/2 рад/с. Определить в момент времени t=0 скорость точки A, лежащей на ободе диска. Положение точки A на диске определяется углом φ=ωt, отсчитываемым от вертикали против хода часовой стрелки.

16.4 Сохранив условие предыдущей задачи, определить скорость точки A в момент времени t=1 c.

16.5 Два одинаковых диска радиуса r каждый соединены...
16.4 Пример Сохранив условие предыдущей задачи, определить скорость точки A в момент времени t=1 c.
16.5 Пример Два одинаковых диска радиуса r каждый соединены цилиндрическим шарниром A. Диск I вращается вокруг неподвижной горизонтальной оси O по закону φ=φ(t). Диск II вращается вокруг горизонтальной оси A согласно уравнению ψ=ψ(t). Оси O и A перпендикулярны плоскости рисунка. Углы φ и ψ отсчитываются от вертикали против хода часовой стрелки. Найти скорость центра C диска II.
16.6 Пример Сохранив условие предыдущей задачи, найти скорость точки B диска II, если ACB=π/2.
16.7 Пример Стержень AB длины 1 м движется, опираясь все время своими концами на две взаимно перпендикулярные прямые Ox и Oy. Найти координаты x и y мгновенного центра скоростей в тот момент, когда угол OAB=60°.
16.8 Пример Доска складного стола, имеющая форму прямоугольника со сторонами a и b, поворотом вокруг оси шипа O переводится из положения ABCD в положение A1B1C1D1 и, будучи разложена, образует прямоугольник со сторонами b и 2a. Найти положение оси шипа O относительно сторон AB и AD.

16.9 Прямая AB движется в плоскости рисунка. В некоторый момент времени скорость vA точки A составляет с прямой AB угол 30° и равна 180 см/с, направ...
16.9 Пример Прямая AB движется в плоскости рисунка. В некоторый момент времени скорость vA точки A составляет с прямой AB угол 30° и равна 180 см/с, направление скорости точки B в этот момент совпадает с направлением прямой AB. Определить скорость vB точки B.
16.10 Пример Прямая AB движется в плоскости рисунка, причем конец ее A все время находится на полуокружности CAD, а сама прямая все время проходит через неподвижную точку C диаметра CD. Определить скорость vC точки прямой, совпадающей с точкой C, в тот момент, когда радиус OA перпендикулярен CD, если известно, что скорость точки A в этот момент 4 м/с.
16.11 Пример Стержень AB длины 0,5 м движется в плоскости рисунка. Скорость vA (vA=2 м/с) образует угол 45° с осью x, совмещенной со стержнем. Скорость vB точки B образует угол 60° с осью x. Найти модуль скорости точки B и угловую скорость стержня.
16.12 Пример Точильный станок приводится в движение педалью OA=24 см, которая колеблется около оси O по закону φ=(π/6)sin(πt/2) рад (угол φ отсчитывается от горизонтали). Точильный камень K вращается вокруг оси O1 с помощью стержня AB. Оси O и O1 перпендикулярны плоскости рисунка. Найти скорость точки D, лежащей на ободе точильного камня K радиуса R=2BO1, при t=0, если в этот момент OA и O1B расположены горизонтально.

16.13 На рисунке изображен суммирующий механизм. В него входят стержни 1 и 2, движущиеся вдоль вертикальных направляющих. Эти стержни соединены с ко...
16.13 Пример На рисунке изображен суммирующий механизм. В него входят стержни 1 и 2, движущиеся вдоль вертикальных направляющих. Эти стержни соединены с коромыслом AB цилиндрическими шарнирами, скользящими в пазах коромысла. Стержни движутся со скоростями v1 и v2. Показать, что скорость стержня 3, соединенного с центром O коромысла AB и скользящего в вертикальных направляющих, равна по модулю v = bv1/(a+b) + av2/(a+b), где a и b размеры, указанные на рисунке. Найти также угловую скорость коромысла AB.
16.14 Пример Стержень OB вращается вокруг оси O с постоянной угловой скоростью ω=2 с-1 и приводит в движение стержень AD, точки A и C которого движутся по осям: A по горизонтальной Ox, C по вертикальной Oy. Определить скорость точки D стержня при φ=45° и найти уравнение траектории этой точки, если AB=OB=BC=CD=12 см.
16.15 Пример В кривошипном механизме длина кривошипа OA=40 см, длина шатуна AB=2 м; кривошип вращается равномерно с угловой скоростью, равной 6π рад/с. Найти угловую скорость ω шатуна и скорость средней его точки M при четырех положениях кривошипа, для которых угол AOB соответственно равен 0, π/2, π, Зπ/2.

16.16 Найти скорость ползуна B нецентрального кривошипного механизма при двух горизонтальных и двух вертикальных положениях кривошипа, вращающегося ...
16.16 Пример Найти скорость ползуна B нецентрального кривошипного механизма при двух горизонтальных и двух вертикальных положениях кривошипа, вращающегося вокруг вала O с угловой скоростью ω=1,5 рад/с, если OA=40 см, AB=200 см, OC=20 см.
16.17 Пример Определить скорость точки K четырехзвенного механизма OABO1 в положении, указанном на рисунке, если звено OA длины 20 см имеет в данный момент угловую скорость 2 рад/с. Точка K расположена в середине стержня BO1.
16.18 Пример Определить скорость поршня E приводного механизма насоса в положении, указанном на рисунке, если OA=20 см, O1B=O1D. Кривошип OA вращается равномерно с угловой скоростью 2 рад/с.
16.19 Пример Стержни O1A и O2B, соединенные со стержнем AB посредством шарниров A и B, могут вращаться вокруг неподвижных точек O1 и O2, оставаясь в одной плоскости и образуя шарнирный четырехзвенник. Дано: длина стержня O1A=a и его угловая скорость ω. Определить построением ту точку M стержня AB, скорость которой направлена вдоль этого стержня, а также найти величину скорости v точки M в тот момент, когда угол O1AB имеет данную величину α.

16.20 Угловая скорость стержня O1A шарнирного четырехзвенника равна ω1. Выразить угловую скорость ω2 стержня O2B через ω1 и кратчайшие расстояния O1...
16.20 Пример Угловая скорость стержня O1A шарнирного четырехзвенника равна ω1. Выразить угловую скорость ω2 стержня O2B через ω1 и кратчайшие расстояния O1D и O2E от осей вращения стержней O1A и O2B до шатуна AB.
16.21 Пример В шарнирном четырехзвеннике ABCD ведущий кривошип AB вращается с постоянной угловой скоростью ω0=6π рад/с. Определить мгновенные угловые скорости кривошипа CD и стержня BC в тот момент, когда кривошип AB и стержень BC образуют одну прямую, если BC=3AB.
16.22 Пример К середине D стержня AB шарнирного параллелограмма OABO1 присоединен с помощью шарнира D стержень DE, приводящий в возвратно-поступательное движение ползун K. Определить скорость ползуна K и угловую скорость стержня DE в положении, указанном на рисунке, если OA=O1B=2DE=20 см, а угловая скорость звена OA равна в данный момент 1 рад/с.
16.23 Пример Ползуны B и E сдвоенного кривошипно-ползунного механизма соединены стержнем BE. Ведущий кривошип OA и ведомый кривошип OD качаются вокруг общей неподвижной оси O, перпендикулярной плоскости рисунка. Определить мгновенные угловые скорости ведомого кривошипа OD и шатуна DE в тот момент, когда ведущий кривошип OA, имеющий мгновенную угловую скорость ω0=12 рад/с, перпендикулярен направляющей ползунов. Даны размеры: OA=10 см, OD=12 см, AB=26 см, EB=12 см, DE=12√3 см.

16.24 Поршень D гидравлического пресса приводится в движение посредством шарнирно-рычажного механизма OABD. В положении, указанном на рисунке, рычаг...
16.24 Пример Поршень D гидравлического пресса приводится в движение посредством шарнирно-рычажного механизма OABD. В положении, указанном на рисунке, рычаг OL имеет угловую скорость ω=2 рад/с. Определить скорость поршня D и угловую скорость звена AB, если OA=15 см.
16.25 Пример Подвижное лезвие L ножниц для резки металла приводится в движение шарнирно-рычажным механизмом AOBD. Определить скорость шарнира D и угловую скорость звена BD, если в положении, указанном на рисунке, угловая скорость рычага AB равна 2 рад/с, OB=5 см, O1D=10 см.
16.26 Пример В машине с качающимся цилиндром длина кривошипа OA=12 см, расстояние между осью вала и осью цапф цилиндра OO1=60 см, длина шатуна AB=60 см. Определить скорость поршня при четырех положениях кривошипа, указанных на рисунке, если угловая скорость кривошипа ω=5 рад/с=const.

16.27 В машине с качающимся цилиндром длина кривошипа OA=15 см, угловая скорость кривошипа ω0=15 рад/с=const. Найти скорость поршня и угловую скорос...
16.27 Пример В машине с качающимся цилиндром длина кривошипа OA=15 см, угловая скорость кривошипа ω0=15 рад/с=const. Найти скорость поршня и угловую скорость цилиндра в момент, когда кривошип перпендикулярен шатуну. (См. рисунок к задаче 16.26.)
16.28 Пример Кривошипный механизм связан шарнирно в середине C шатуна со стержнем CD, а последний со стержнем DE, который может вращаться вокруг оси E. Определить угловую скорость стержня DE в указанном на рисунке положении кривошипного механизма, если точки B и E расположены на одной вертикали; угловая скорость ω кривошипа OA равна 8 рад/с, OA=25 см, DE=100 см, CDE=90° и BED=30°.
16.29 Пример Катушка радиуса R катится по горизонтальной плоскости HH без скольжения. На средней цилиндрической части катушки радиуса r намотана нить, конец которой B обладает при этом движении скоростью u по горизонтальному направлению. Определить скорость v перемещения оси катушки.
16.30 Пример Цепная передача в велосипеде состоит из цепи, охватывающей зубчатое колесо A с 26 зубцами и шестерню B с 9 зубцами. Шестерня B неизменно соединена с задним колесом C, диаметр которого равен 70 см. Определить скорость велосипеда, когда колесо A делает в секунду один оборот, а колесо C катится при этом без скольжения по прямолинейному пути.
16.31 Пример Колесо радиуса R=0,5 м катится без скольжения по прямолинейному участку пути; скорость центра его постоянна и равна v0=10 м/с. Найти скорости концов M1, M2, M3и M4 вертикального и горизонтального диаметров колеса. Определить его угловую скорость.