
12.9Пример Поезд движется равнозамедленно по дуге окружности радиуса R=800 м и проходит путь s=800 м, имея начальную скорость v0=54 км/ч и конечную v=18 км/ч. Определить полное ускорение поезда в начале и в конце дуги, а также время движения по этой дуге.
12.10Пример Закругление трамвайного пути состоит из двух дуг радиусом ρ1=300 м и ρ2=400 м. Центральные углы α1=α2=60°. Построить график нормального ускорения вагона, идущего по закруглению со скоростью v=36 км/ч.
12.11Пример Точка движется по дуге окружности радиуса R=20 см. Закон ее движения по траектории: s=20 sin πt (t в секундах, s в сантиметрах). Найти величину и направление скорости, касательное, нормальное и полное ускорения точки в момент t=5 c. Построить также графики скорости, касательного и нормального ускорений.
12.12Пример Прямолинейное движение точки происходит по закону s=g(at+e-at)/a2, где a и g постоянные величины. Найти начальную скорость точки, а также определить ее ускорение в функции от скорости.
12.13Пример Движение точки задано уравнениями x = 10 cos (2πt/5), y = 10 sin (2πt/5) (x, y в сантиметрах, t в секундах). Найти траекторию точки, величину и направление скорости, а также величину и направление ускорения.
12.14Пример Уравнения движения пальца кривошипа дизеля в период пуска имеют вид x=75 cos 4t2, y=75 sin 4t2 (x, y в сантиметрах, t в секундах). Найти скорость, касательное и нормальное ускорения пальца.

12.16Пример Найти радиус кривизны при x=y=0 траектории точки, описывающей фигуру Лиссажу согласно уравнениям x = -a sin 2ωt, y = -a sin ωt.
12.17Пример Найти величину и направление ускорения, а также радиус кривизны траектории точки колеса, катящегося без скольжения по горизонтальной оси Ox, если точка описывает циклоиду согласно уравнениям x = 20t - sin 20t, y = 1 - cos 20t (t в секундах, x, y в метрах). Определить также значение радиуса кривизны ρ при t=0.
12.18Пример Найти траекторию точки M шатуна кривошипно-ползунного механизма, если r=l=60 см, MB=l/3, φ=4πt (t в секундах), а также определить скорость, ускорение и радиус кривизны траектории точки в момент, когда φ=0.
12.19Пример На проволочной окружности радиуса 10 см надето колечко M; через него проходит стержень OA, который равномерно вращается вокруг точки O, лежащей на той же окружности; угловая скорость стержня такова, что он поворачивается на прямой угол за 5 c. Определить скорость v и ускорение w колечка.
12.20Пример В условиях предыдущей задачи определить скорость и ускорение колечка M как функцию угла φ, если угловое ускорение стержня OM равно k cos φ (k=const). В начальный момент при t=0 угол φ и его скорость равнялись нулю, радиус окружности r, 0 ≤ φ ≤ π.

12.22Пример Снаряд движется в вертикальной плоскости согласно уравнениям x=300t, y=400t-5t2 (t в секундах, x, y в метрах). Найти: 1) скорость и ускорение в начальный момент, 2) высоту и дальность обстрела, 3) радиус кривизны траектории в начальной и в наивысшей точках.
12.23Пример Из орудия береговой артиллерии с высоты h=30 м над уровнем моря произведен выстрел под углом α0=45° к горизонту с начальной скоростью снаряда v0=1000 м/с. Определить, на каком расстоянии от орудия снаряд попадет в цель, находящуюся на уровне моря. Сопротивлением воздуха пренебречь.
12.24Пример Найти касательное и нормальное ускорения точки, движение которой выражается уравнениями x = αt, y = βt - gt2/2.
12.25Пример Точка движется по винтовой линии согласно уравнениям x=2 cos 4t, y=2 sin 4t, z=2t, причем за единицу длины взят метр. Определить радиус кривизны ρ траектории.
12.26Пример Движение точки задано в полярных координатах уравнениями r=aekt и φ=kt, где a и k заданные постоянные величины. Найти уравнение траектории, скорость, ускорение и радиус кривизны траектории точки как функции ее радиус-вектора r.
12.27Пример Движение точки задано уравнениями x = 2t, y = t2 (t в секундах, x и y в сантиметрах). Определить величины и направления скорости и ускорения точки в момент времени t=1 c.

12.29Пример Кривошип O1C длиной a/2 вращается с постоянной угловой скоростью ω вокруг оси O1. В точке С с кривошипом шарнирно связана линейка AB, проходящая все время через качающуюся муфту O, находящуюся на расстоянии a/2 от оси вращения O1. Приняв точку O за полюс, найти в полярных координатах уравнения движения точки M линейки, отстоящей от шарнира C на расстоянии a, ее траекторию, скорость и ускорение (в начальный момент угол φ= COO1=0).
12.30Пример В условиях задачи 12.29 определить радиус кривизны кардиоиды при r=2a, φ=0.
12.31Пример Конец A стержня AB перемещается по прямолинейной направляющей CD с постоянной скоростью vA. Стержень AB все время проходит через качающуюся муфту O, отстоящую от направляющей CD на расстоянии a. Приняв точку O за полюс, найти в полярных координатах r, φ скорость и ускорение точки M, находящейся на линейке на расстоянии b от ползуна A.
12.32Пример Точка M движется по винтовой линии. Уравнения движения ее в цилиндрической системе координат имеют вид r = a, φ = kt, z = νt. Найти проекции ускорения точки на оси цилиндрической системы координат, касательную и нормальную составляющие ускорения и радиус кривизны винтовой линии.

12.34Пример Корабль движется под постоянным курсовым углом α к географическому меридиану, описывая при этом локсодромию (см. задачу 11.13). Считая, что модуль скорости v корабля не изменяется, определить проекции ускорения корабля на оси сферических координат r, λ и φ (λ долгота, φ широта места плавания), модуль ускорения и радиус кривизны локсодромии.
12.35Пример Выразить декартовы координаты точки через тороидальные координаты r=CM, ψ и φ и определить коэффициенты Ляме (Ламе).
12.36Пример Движение точки задано в тороидальной системе координат r, ψ и φ. Найти проекции скорости и ускорения точки на оси этой системы отсчета.

12.38Пример Механизм робота-манипулятора состоит из поворотного устройства 1, колонны для вертикального перемещения 2 и выдвигающейся руки со схватом 3. Найти скорость и ускорение центра схвата при заданных φ(t), z(t), r(t).
12.39Пример Вертикальная колонна, несущая руку робота-манипулятора, может поворачиваться на угол φ. Рука со схватом поворачивается на угол ϑ и выдвигается на расстояние r. Найти скорость и ускорение центра схвата.
12.40Пример Механизм робота-манипулятора состоит из поворотного устройства с вертикальной осью (угол поворота φ) и двух звеньев, расположенных в вертикальной плоскости (углы поворота звеньев ϑ1и ϑ2). Найти скорость центра схвата при переносе груза.

13.2Пример Написать уравнение вращения диска паровой турбины при пуске в ход, если известно, что угол поворота пропорционален кубу времени и при t=3 с угловая скорость диска равна ω=27π рад/с.
13.3Пример Маятник центробежного регулятора, вращающийся вокруг вертикальной оси AB, делает 120 об/мин. В начальный момент угол поворота был равен π/6 рад. Найти угол поворота и угловое перемещение маятника за время t=1/2 c.
13.4Пример Тело, начиная вращаться равноускоренно из состояния покоя, делает 3600 оборотов в первые 2 минуты. Определить угловое ускорение.
13.5Пример Вал начинает вращаться равноускоренно из состояния покоя; в первые 5 с он совершает 12,5 оборота. Какова его угловая скорость по истечении этих 5 с?
13.6Пример Маховое колесо начинает вращаться из состояния покоя равноускоренно; через 10 мин после начала движения оно имеет угловую скорость, равную 4π рад/с. Сколько оборотов сделало колесо за эти 10 мин?
13.7Пример Колесо, имеющее неподвижную ось, получило начальную угловую скорость 2π рад/с; сделав 10 оборотов, оно вследствие трения в подшипниках остановилось. Определить угловое ускорение ε колеса, считая его постоянным.

13.9Пример Тело совершает колебания около неподвижной оси, причем угол поворота выражается уравнением φ = 20° sin ψ, где угол ψ выражен в угловых градусах зависимостью ψ=(2t)°, причем t обозначает секунды. Определить угловую скорость тела в момент t=0, ближайшие моменты t1 и t2, в которые изменяется направление вращения, и период колебания T.
13.10Пример Часовой балансир совершает крутильные гармонические колебания с периодом T=1/2 c. Наибольший угол отклонения точки обода балансира от положения равновесия α=π/2 рад. Найти угловую скорость и угловое ускорение баланса через 2 с после момента, когда балансир проходит положение равновесия.
13.11Пример Маятник колеблется в вертикальной плоскости около неподвижной горизонтальной оси O. Выйдя в начальный момент из положения равновесия, он достигает наибольшего отклонения α=π/16 рад через 2/3 c. 1) Написать закон колебаний маятника, считая, что он совершает гармонические колебания. 2) В каком положении маятник будет иметь наибольшую угловую скорость и чему она равна?
13.12Пример Определить скорость v и ускорение w точки, находящейся на поверхности Земли в Ленинграде, принимая во внимание только вращение Земли вокруг своей оси; широта Ленинграда 60°, радиус Земли 6370 км.

13.14Пример Точка A шкива, лежащая на его ободе, движется со скоростью 50 см/с, а некоторая точка B, взятая на одном радиусе с точкой A, движется со скоростью 10 см/с; расстояние AB=20 см. Определить угловую скорость ω и диаметр шкива.
13.15Пример Маховое колесо радиуса R=2 м вращается равноускоренно из состояния покоя; через t=10 с точки, лежащие на ободе, обладают линейной скоростью v=100 м/с. Найти скорость, нормальное и касательное ускорения точек обода колеса для момента t=15 c.
13.16Пример Найти горизонтальную скорость v, которую нужно сообщить телу, находящемуся на экваторе, для того чтобы оно, двигаясь равномерно вокруг Земли по экватору в особых направляющих, имело ускорение свободного падения. Определить также время T, по истечении которого тело вернется в первоначальное положение. Радиус Земли R=637*106 см, а ускорение силы тяжести на экваторе g=978 см/с2.
13.17Пример Угол наклона полного ускорения точки обода махового колеса к радиусу равен 60°. Касательное ускорение ее в данный момент wτ=10*√3 м/с2. Найти нормальное ускорение точки, отстоящей от оси вращения на расстоянии r=0,5 м. Радиус махового колеса R=1 м.
13.18Пример Вал радиуса R=10 см приводится во вращение гирей P, привешенной к нему на нити. Движение гири выражается уравнением x=100t2, где x расстояние гири от места схода нити с поверхности вала, выраженное в сантиметрах, t время в секундах. Определить угловую скорость ω и угловое ускорение ε вала, а также полное ускорение w точки на поверхности вала в момент t.

13.20Пример Стрелка гальванометра длины 3 см колеблется вокруг неподвижной оси по закону φ=φ0 sin kt. Определить ускорение конца стрелки в ее среднем и крайних положениях, а также моменты времени, при которых угловая скорость ω и угловое ускорение ε обращаются в нуль, если период колебаний равен 0,4 c, а угловая амплитуда φ0=π/30.
14.1Пример Угловая скорость зубчатого колеса I диаметра D1=360 мм равна 10π/3 рад/с. Чему должен равняться диаметр зубчатого колеса II, находящегося с колесом I во внутреннем зацеплении, угловая скорость которого в три раза больше угловой скорости колеса I?
14.2Пример Редуктор скорости, служащий для замедления вращения и передающий вращение вала I валу II, состоит из четырех шестерен с соответствующим числом зубцов: z1=10, z2=60, z3=12, z4=70. Определить передаточное отношение механизма.
14.3Пример Станок со шкивом A приводится в движение из состояния покоя бесконечным ремнем от шкива B электромотора; радиусы шкивов: r1=75 см, r2=30 см; после пуска в ход электромотора его угловое ускорение равно 0,4π рад/с2. Пренебрегая скольжением ремня по шкивам, определить через сколько времени угловая скорость станка будет равна 10π рад/с.
14.4Пример В механизме стрелочного индикатора движение от рейки мерительного штифта 1 передается шестерне 2, на оси которой укреплено зубчатое колесо 3, сцепляющееся с шестерней 4, несущей стрелку. Определить угловую скорость стрелки, если движение штифта задано уравнением x=a sin kt и радиусы зубчатых колес соответственно равны r2, r3 и r4

14.6Пример Для получения периодически изменяющихся угловых скоростей сцеплены два одинаковых эллиптических зубчатых колеса, из которых одно вращается равномерно вокруг оси O с угловой скоростью ω=9π рад/с, а другое приводится первым во вращательное движение вокруг оси O1. Оси O и O1 параллельны и проходят через фокусы эллипсов. Расстояние OO1 равно 50 см, полуоси эллипсов 25 и 15 см. Определить наименьшую и наибольшую угловые скорости колеса O1.
14.7Пример Вывести закон передачи вращения пары эллиптических зубчатых колес с полуосями a и b. Угловая скорость колеса I ω1=const. Расстояние между осями O1O2=2a, φ угол, образованный прямой, соединяющей оси вращения, и большой осью эллиптического колеса I. Оси проходят через фокусы эллипсов.

14.8Пример Определить, через какой промежуток времени зубчатое коническое колесо O1 радиуса r1=10 см будет иметь угловую скорость, равную 144π рад/с, если оно приводится во вращение из состояния покоя таким же колесом O2 радиуса r2=15 см, вращающимся равноускоренно с угловым ускорением 4π рад/с2.
14.8Пример Ведущий вал I фрикционной передачи вращается с угловой скоростью ω=20π рад/с и на ходу передвигается (направление указано стрелкой) так, что расстояние d меняется по закону d=(10-0,5t) см (t в секундах). Определить: 1) угловое ускорение вала II как функцию расстояния d; 2) ускорение точки на ободе колеса B в момент, когда d=r, даны радиусы фрикционных колес: r=5 см, R=15 см.
14.8Пример Найти закон движения, скорость и ускорение ползуна B кривошипно-ползунного механизма OAB, если длины шатуна и кривошипа одинаковы: AB=OA=r, а вращение кривошипа OA вокруг вала O равномерно: ω=ω0. Ось x направлена по направляющей ползуна. Начало отсчета расстояний в центре O кривошипа.

14.13Пример Найти закон движения стержня, если диаметр эксцентрика d=2r, а ось вращения O находится от оси диска C на расстоянии OC=a, ось Ox направлена по стержню, начало отсчета на оси вращения, a/r=λ.
14.14Пример Написать уравнение движения поршня нецентрального кривошипно-ползунного механизма. Расстояние от оси вращения кривошипа до направляющей линейки h, длина кривошипа r, длина шатуна l; ось Cx направлена по направляющей ползуна. Начало отсчета расстояний в крайнем правом положении ползуна; l/r=λ, h/r=k, φ=ω0t.
14.15Пример Кулак, равномерно вращаясь вокруг оси O, создает равномерное возвратно-поступательное движение стержня AB. Время одного полного оборота кулака 8 c, уравнения движения стержня в течение этого времени имеют вид (x в сантиметрах, t в секундах) x = 30 + 5t, 0 ≤ t ≤ 4, x = 70 - 5t, 4 ≤ t ≤ 8. Определить уравнения контура кулака и построить график движения стержня.

114.17Пример Написать уравнение контура кулака, у которого полный ход стержня h=20 см соответствовал бы одной трети оборота, причем перемещения стержня должны быть в это время пропорциональны углу поворота. В течение следующей трети оборота стержень должен оставаться неподвижным, и, наконец, на протяжении последней трети он должен совершать обратный ход при тех же условиях, что и на первой трети. Наименьшее расстояние конца стержня от центра кулака равно 70 см.

14.18Пример Найти ускорение кругового поступательного движущегося кулака, если при его равноускоренном движении без начальной скорости стержень опустился за 4 с из наивысшего положения на h=4 см. Радиус кругового контура кулака r=10 см. (См. рисунок к задаче 14.18.)
14.18Пример Линейка эллипсографа приводится в движение кривошипом OC, вращающимся с постоянной угловой скоростью ω0 вокруг оси O. Приняв ползун B за полюс, написать уравнения плоского движения линейки эллипсографа, если OC=BC=AC=r. В начальный момент линейка AB была расположена горизонтально.
14.18Пример Колесо радиуса R катится без скольжения по горизонтальной прямой. Скорость центра C колеса постоянная и равна v. Определить уравнения движения колеса, если в начальный момент ось y , жестко связанная с колесом, была вертикальна, а неподвижная ось y проходила в это время через центр C колеса. За полюс принять точку C.

15.4Пример Шестеренка радиуса r, катящаяся внутри неподвижной шестеренки радиуса R, приводится в движение кривошипом OA, вращающимся равномерно вокруг оси O неподвижной шестеренки с угловой скоростью ω0. При t=0 угол φ0=0. Составить уравнения движения подвижной шестеренки, приняв ее центр A за полюс.
15.5Пример Найти уравнения движения шатуна, если кривошип вращается равномерно; за полюс взять точку A на оси пальца кривошипа; r длина кривошипа, l длина шатуна, ω0 угловая скорость кривошипа. При t=0 угол α=0.

15.7Пример Конец A стержня AB скользит по прямолинейной направляющей с постоянной скоростью v, причем стержень при движении опирается на штифт D. Написать уравнения движения стержня и его конца B. Длина стержня равна l, превышение штифта D над прямолинейной направляющей равно H. В начале движения конец стержня A совпадал с точкой O началом неподвижной системы координат; OM=a. За полюс принять точку A.
15.8Пример Кривошип O1A длины a/2 вращается с постоянной угловой скоростью ω. С кривошипом в точке A шарнирно соединен стержень AB, проходящий все время через качающуюся муфту O, причем OO1=a/2. Найти уравнения движения стержня AB и траекторию (в полярных и декартовых координатах) точки M, находящейся на стержне на расстоянии a от шарнира A. За полюс принять точку A.

15.10Пример Кривошип OA антипараллелограмма OABO1, поставленного на малое звено OO1, равномерно вращается с угловой скоростью ω. Приняв за полюс точку A, составить уравнения движения звена AB, если OA=O1B=a и OO1=AB=b (a>b); в начальный момент кривошип OA был направлен по OO1.
16.1Пример Направив ось перпендикулярно скорости любой из точек плоской фигуры, показать, что проекции на эту ось скоростей всех лежащих на ней точек равны нулю.
16.2Пример Колесо катится по наклонной плоскости, образующей угол 30° с горизонтом. Центр O колеса движется по закону xO=10t2 см, где x ось, направленная параллельно наклонной плоскости. К центру O колеса подвешен стержень OA=36 см, качающийся вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, по закону φ=(π/3)sin(πt/6) рад. Найти скорость конца A стержня AO в момент времени t=1 c.
16.3Пример При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC=(100-4,9t2) м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью ω=π/2 рад/с. Определить в момент времени t=0 скорость точки A, лежащей на ободе диска. Положение точки A на диске определяется углом φ=ωt, отсчитываемым от вертикали против хода часовой стрелки.

16.5Пример Два одинаковых диска радиуса r каждый соединены цилиндрическим шарниром A. Диск I вращается вокруг неподвижной горизонтальной оси O по закону φ=φ(t). Диск II вращается вокруг горизонтальной оси A согласно уравнению ψ=ψ(t). Оси O и A перпендикулярны плоскости рисунка. Углы φ и ψ отсчитываются от вертикали против хода часовой стрелки. Найти скорость центра C диска II.
16.6Пример Сохранив условие предыдущей задачи, найти скорость точки B диска II, если ACB=π/2.
16.7Пример Стержень AB длины 1 м движется, опираясь все время своими концами на две взаимно перпендикулярные прямые Ox и Oy. Найти координаты x и y мгновенного центра скоростей в тот момент, когда угол OAB=60°.
16.8Пример Доска складного стола, имеющая форму прямоугольника со сторонами a и b, поворотом вокруг оси шипа O переводится из положения ABCD в положение A1B1C1D1 и, будучи разложена, образует прямоугольник со сторонами b и 2a. Найти положение оси шипа O относительно сторон AB и AD.

16.10Пример Прямая AB движется в плоскости рисунка, причем конец ее A все время находится на полуокружности CAD, а сама прямая все время проходит через неподвижную точку C диаметра CD. Определить скорость vC точки прямой, совпадающей с точкой C, в тот момент, когда радиус OA перпендикулярен CD, если известно, что скорость точки A в этот момент 4 м/с.
16.11Пример Стержень AB длины 0,5 м движется в плоскости рисунка. Скорость vA (vA=2 м/с) образует угол 45° с осью x, совмещенной со стержнем. Скорость vB точки B образует угол 60° с осью x. Найти модуль скорости точки B и угловую скорость стержня.
16.12Пример Точильный станок приводится в движение педалью OA=24 см, которая колеблется около оси O по закону φ=(π/6)sin(πt/2) рад (угол φ отсчитывается от горизонтали). Точильный камень K вращается вокруг оси O1 с помощью стержня AB. Оси O и O1 перпендикулярны плоскости рисунка. Найти скорость точки D, лежащей на ободе точильного камня K радиуса R=2BO1, при t=0, если в этот момент OA и O1B расположены горизонтально.

16.14Пример Стержень OB вращается вокруг оси O с постоянной угловой скоростью ω=2 с-1 и приводит в движение стержень AD, точки A и C которого движутся по осям: A по горизонтальной Ox, C по вертикальной Oy. Определить скорость точки D стержня при φ=45° и найти уравнение траектории этой точки, если AB=OB=BC=CD=12 см.
16.15Пример В кривошипном механизме длина кривошипа OA=40 см, длина шатуна AB=2 м; кривошип вращается равномерно с угловой скоростью, равной 6π рад/с. Найти угловую скорость ω шатуна и скорость средней его точки M при четырех положениях кривошипа, для которых угол AOB соответственно равен 0, π/2, π, Зπ/2.

16.17Пример Определить скорость точки K четырехзвенного механизма OABO1 в положении, указанном на рисунке, если звено OA длины 20 см имеет в данный момент угловую скорость 2 рад/с. Точка K расположена в середине стержня BO1.
16.18Пример Определить скорость поршня E приводного механизма насоса в положении, указанном на рисунке, если OA=20 см, O1B=O1D. Кривошип OA вращается равномерно с угловой скоростью 2 рад/с.
16.19Пример Стержни O1A и O2B, соединенные со стержнем AB посредством шарниров A и B, могут вращаться вокруг неподвижных точек O1 и O2, оставаясь в одной плоскости и образуя шарнирный четырехзвенник. Дано: длина стержня O1A=a и его угловая скорость ω. Определить построением ту точку M стержня AB, скорость которой направлена вдоль этого стержня, а также найти величину скорости v точки M в тот момент, когда угол O1AB имеет данную величину α.

16.21Пример В шарнирном четырехзвеннике ABCD ведущий кривошип AB вращается с постоянной угловой скоростью ω0=6π рад/с. Определить мгновенные угловые скорости кривошипа CD и стержня BC в тот момент, когда кривошип AB и стержень BC образуют одну прямую, если BC=3AB.
16.22Пример К середине D стержня AB шарнирного параллелограмма OABO1 присоединен с помощью шарнира D стержень DE, приводящий в возвратно-поступательное движение ползун K. Определить скорость ползуна K и угловую скорость стержня DE в положении, указанном на рисунке, если OA=O1B=2DE=20 см, а угловая скорость звена OA равна в данный момент 1 рад/с.
16.23Пример Ползуны B и E сдвоенного кривошипно-ползунного механизма соединены стержнем BE. Ведущий кривошип OA и ведомый кривошип OD качаются вокруг общей неподвижной оси O, перпендикулярной плоскости рисунка. Определить мгновенные угловые скорости ведомого кривошипа OD и шатуна DE в тот момент, когда ведущий кривошип OA, имеющий мгновенную угловую скорость ω0=12 рад/с, перпендикулярен направляющей ползунов. Даны размеры: OA=10 см, OD=12 см, AB=26 см, EB=12 см, DE=12√3 см.

16.25Пример Подвижное лезвие L ножниц для резки металла приводится в движение шарнирно-рычажным механизмом AOBD. Определить скорость шарнира D и угловую скорость звена BD, если в положении, указанном на рисунке, угловая скорость рычага AB равна 2 рад/с, OB=5 см, O1D=10 см.
16.26Пример В машине с качающимся цилиндром длина кривошипа OA=12 см, расстояние между осью вала и осью цапф цилиндра OO1=60 см, длина шатуна AB=60 см. Определить скорость поршня при четырех положениях кривошипа, указанных на рисунке, если угловая скорость кривошипа ω=5 рад/с=const.

16.28Пример Кривошипный механизм связан шарнирно в середине C шатуна со стержнем CD, а последний со стержнем DE, который может вращаться вокруг оси E. Определить угловую скорость стержня DE в указанном на рисунке положении кривошипного механизма, если точки B и E расположены на одной вертикали; угловая скорость ω кривошипа OA равна 8 рад/с, OA=25 см, DE=100 см, CDE=90° и BED=30°.
16.29Пример Катушка радиуса R катится по горизонтальной плоскости HH без скольжения. На средней цилиндрической части катушки радиуса r намотана нить, конец которой B обладает при этом движении скоростью u по горизонтальному направлению. Определить скорость v перемещения оси катушки.
16.30Пример Цепная передача в велосипеде состоит из цепи, охватывающей зубчатое колесо A с 26 зубцами и шестерню B с 9 зубцами. Шестерня B неизменно соединена с задним колесом C, диаметр которого равен 70 см. Определить скорость велосипеда, когда колесо A делает в секунду один оборот, а колесо C катится при этом без скольжения по прямолинейному пути.
16.31Пример Колесо радиуса R=0,5 м катится без скольжения по прямолинейному участку пути; скорость центра его постоянна и равна v0=10 м/с. Найти скорости концов M1, M2, M3и M4 вертикального и горизонтального диаметров колеса. Определить его угловую скорость.






chertegi@mail.ru