Сопромат

Механика

Детали машин

В Word'е

Качественно

Быстро

Мещерский И.В. Сборник задач по теоретической механике. Статика твердого тела. Кинематика. Динамика

Образцы оформления здесь

 

И.В. МЕЩЕРСКИЙ
 
СБОРНИК ЗАДАЧ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ
 
ИЗДАНИЕ ТРИДЦАТЬ ШЕСТОЕ
ИСПРАВЛЕННОЕ
 
МОСКВА «НАУКА»
ГЛАВНАЯ РЕДАКЦИЯ
ФИЗИКО-МА...
И.В. МЕЩЕРСКИЙ
 
 
СБОРНИК ЗАДАЧ
 
ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ
 
 
ИЗДАНИЕ ТРИДЦАТЬ ШЕСТОЕ
ИСПРАВЛЕННОЕ
 
 
МОСКВА «НАУКА»
ГЛАВНАЯ РЕДАКЦИЯ
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
 
 
1986

11(11)
Два груза, в 10 H и 5 H, висящие на одной веревке, укреплены на ней в разных местах, причем больший груз висит ниже меньшего. Каково натяжен...
11(11) Пример Два груза, в 10 H и 5 H, висящие на одной веревке, укреплены на ней в разных местах, причем больший груз висит ниже меньшего. Каково натяжение веревки, если верхний конец ее прикреплен к неподвижной точке?
12(12) Пример Буксир тянет три баржи различных размеров, следующие одна за другой. Сила тяги винта буксира в данный момент равна 18 кН. Сопротивление воды движению буксира равно 6 кН; сопротивление воды движению первой баржи 6 kH, второй баржи 4 кН и третьей 2 кН. Имеющийся в распоряжении канат выдерживает безопасно растягивающую силу в 2 кН. Сколько канатов надо протянуть от буксира к первой барже, от первой ко второй и от второй к третьей, если движение прямолинейное и равномерное?
13(14) Пример На дне шахты находится человек веса 640 Н; посредством каната, перекинутого через неподвижный блок, человек удерживает груз в 480 Н. 1) Какое давление оказывает человек на дно шахты? 2) Какой наибольший груз он может удержать с помощью каната?
14(15) Пример Поезд идет по прямолинейному горизонтальному пути с постоянной скоростью; вес поезда, не считая электровоза, 12*10 3 кH. Какова сила тяги электровоза, если сопротивление движению поезда равно 0,005 давления поезда на рельсы?
15(16) Пример Пассажирский поезд состоит из электровоза, багажного вагона веса 400 кН и 10 пассажирских вагонов веса 500 кН каждый. С какой силой будут натянуты вагонные стяжки и какова сила тяги электровоза, если сопротивление движению поезда равно 0,005 его веса? При решении задачи принять, что сопротивление движению распределяется между составом поезда пропорционально весу и что движение поезда равномерное

В центре правильного шестиугольника приложены силы 1, 3, 5, 7, 9 и 11 Н, направленные к его вершинам. Найти величину и направление равнодействующей ...
21(21) Пример В центре правильного шестиугольника приложены силы 1, 3, 5, 7, 9 и 11 Н, направленные к его вершинам. Найти величину и направление равнодействующей и уравновешивающей.
22(23) Пример Силу в 8 Н разложить на две по 5 Н каждая. Можно ли ту же силу разложить на две по 10 Н, 15 Н, 20 Н и т.д.? На две по 100 Н?
23(24) Пример По направлению стропильной ноги, наклоненной к горизонту под углом α=45°, действует сила Q=2,5 кН. Какое усилие S возникает при этом по направлению горизонтальной затяжки и какая сила N действует на стену по отвесному направлению?
24(25) Пример Два трактора, идущих по берегам прямого канала с постоянной скоростью, тянут барку при помощи двух канатов. Силы натяжения канатов равны 0,8 кН и 0,96 кН; угол между ними равен 60°. Найти сопротивление воды P, испытываемое баркой при ее движении, и углы α и β, которые должны составлять канаты с берегами канала, если барка движется параллельно берегам.
25(26) Пример Кольца A, B и C трех пружинных весов укреплены неподвижно на горизонтальной доске. К крючкам весов привязаны три веревки, которые натянуты и связаны в один узел D. Показания весов: 8, 7 и 13 Н. Определить углы α и β, образуемые направлениями веревок, как указано на рисунке.
26(27) Пример Стержни AC и BC соединены между собой и с вертикальной стеной посредством шарниров. На шарнирный болт C действует вертикальная сила P=1000 Н. Определить реакции этих стержней на шарнирный болт C, если углы, составляемые стержнями со стеной, равны: α=30° и β=60°.

27(28)
На рисунках a, б и в, как и в предыдущей задаче, схематически изображены стержни, соединенные между собой, с потолком и стенами посредством ...
27(28) Пример На рисунках a, б и в, как и в предыдущей задаче, схематически изображены стержни, соединенные между собой, с потолком и стенами посредством шарниров. К шарнирным болтам B, F и K подвешены грузы Q=1000 Н. Определить усилия в стержнях для случаев: а) α=β=45°; б) α=30°, β=60°; в) α=60°, β=30°.
28(29) Пример Уличный фонарь подвешен в точке B к середине троса ABC, прикрепленного концами к крюкам A и C, находящимся на одной горизонтали. Определить натяжения T1 и T2 в частях троса AB и BC, если вес фонаря равен 150 Н, длина всего троса ABC равна 20 м и отклонение точки его подвеса от горизонтали BD=0,1 м. Весом троса пренебречь.
29(2 10) Пример Уличный фонарь веса 300 Н подвешен к вертикальному столбу с помощью горизонтальной поперечины AC=1,2 м и подкоса BC=1,5 м. Найти усилия S1 и S2 в стержнях AC и BC, считая крепления в точках A, B и C шарнирными.
2.10(2.11) Пример Электрическая лампа веса 20 Н подвешена к потолку на шнуре AB и затем оттянута к стене веревкой BC. Определить натяжения: TA шнура AB и TC веревки BC, если известно, что угол α=60°, а угол β=135°. Весом шнура и веревки пренебречь.
2.11(2.12) Пример Мачтовый кран состоит из стрелы AB, прикрепленной шарниром A к мачте, и цепи CB. К концу B стрелы подвешен груз P=2 кН; углы BAC=15°, ACB=135°. Определить натяжение T цепи CB и усилие Q в стреле AB.

2.12(2.13)
На одной железной дороге, проведенной в горах, участок пути в ущелье подвешен так, как показано на рисунке. Предполагая подвеску AB нагр...
2.12(2.13) Пример На одной железной дороге, проведенной в горах, участок пути в ущелье подвешен так, как показано на рисунке. Предполагая подвеску AB нагруженной силой P=500 кН, найти усилия в стержнях AC и AD.
2.13(2.14) Пример Через два блока A и B, находящихся на одной горизонтальной прямой AB=l, перекинута веревка CAEBD. К концам C и D веревки подвешены гири веса p каждая, а к точке E гиря веса P. Определить, пренебрегая трением на блоках и их размерами, расстояние x точки E от прямой AB в положении равновесия. Весом веревки пренебречь.
2.14(2.15) Пример Груз веса 25 Н удерживается в равновесии двумя веревками, перекинутыми через блоки и натягиваемыми грузами. Один из этих грузов весит 20 Н; синус угла, образуемого соответствующей веревкой с вертикалью, равен 0,6. Пренебрегая трением на блоках, определить величину p второго груза и угол α, образуемый второй веревкой с вертикальной линией. Весом веревки пренебречь.
2.15(2.16) Пример К веревке AB, один конец которой закреплен в точке A, привязаны в точке B груз P и веревка BCD, перекинутая через блок; к концу ее D привязана гиря Q веса 100 Н. Определить, пренебрегая трением на блоке, натяжение T веревки AB и величину груза P, если в положении равновесия углы, образуемые веревками с вертикалью BE, равны: α=45°, β=60°.

2.16(2.17)
Груз P=20 кН поднимается магазинным краном BAC посредством цепи, перекинутой через блок A и через блок D, который укреплен на стене так,...
2.16(2.17) Пример Груз P=20 кН поднимается магазинным краном BAC посредством цепи, перекинутой через блок A и через блок D, который укреплен на стене так, что угол CAD=30°. Углы между стержнями крана: ABC=60°, ACB=30°. Определить усилия Q1 и Q2 в стержнях AB и AC.
2.17 Пример Два одинаковых цилиндра I веса P каждый подвешены на нитях к точке O. Между ними лежит цилиндр II веса Q. Вся система находится в равновесии. Цилиндры I не касаются друг друга. Определить зависимость между углом α, образованным нитью с вертикалью, и углом β, образованным прямой, проходящей через оси цилиндров I и II, с вертикалью.
2.18(2.18) Пример На двух взаимно перпендикулярных гладких наклонных плоскостях AB и BC лежит однородный шар O веса 60 Н. Определить давление шара на каждую плоскость, зная, что плоскость BC составляет с горизонтом угол 60°
2.19(2.19) Пример К вертикальной гладкой стене AB подвешен на тросе AC однородный шар O. Трос составляет со стеной угол α, вес шара P. Определить натяжение троса T и давление Q шара на стену
2.20(2.20) Пример Однородный шар веса 20 Н удерживается на гладкой наклонной плоскости тросом, который привязан к пружинным весам, укрепленным над плоскостью; показание пружинных весов 10 Н. Угол наклона плоскости к горизонту равен 30°. Определить угол α, составляемый направлением троса с вертикалью, и давление Q шара на плоскость. Весом пружинных весов пренебречь

2.21(2.21)
Шарик B веса P подвешен к неподвижной точке A посредством нити AB и лежит на поверхности гладкой сферы радиуса r; расстояние точки A от ...
2.21(2.21) Пример Шарик B веса P подвешен к неподвижной точке A посредством нити AB и лежит на поверхности гладкой сферы радиуса r; расстояние точки A от поверхности сферы AC=d, длина нити AB=l, прямая AO вертикальна. Определить натяжение T нити и реакцию Q сферы. Радиусом шарика пренебречь.
2.22(2.22) Пример Однородный шар веса 10 Н удерживается в равновесии двумя тросами AB и CD, расположенными в одной вертикальной плоскости и составляющими один с другим угол 150°. Трос AB наклонен к горизонту под углом 45°. Определить натяжение тросов.
2.23(2.23) Пример Котел с равномерно распределенным по длине весом P=40 кН и радиуса R=1 м лежит на выступах каменной кладки. Расстояние между стенками кладки l=1,6 м. Пренебрегая трением, найти давление котла на кладку в точках A и B
2.24(2.24) Пример Вес однородного трамбовочного катка равен 20 кН, радиус его 60 см. Определить горизонтальное усилие P, необходимое для перетаскивания катка через каменную плиту высоты 8 см, в положении, указанном на рисунке

2.25(2.25)
Однородный стержень AB веса 160 Н, длины 1,2 м подвешен в точке C на двух тросах AC и CB одинаковой длины, равной 1 м. Определить натяже...
2.25(2.25) Пример Однородный стержень AB веса 160 Н, длины 1,2 м подвешен в точке C на двух тросах AC и CB одинаковой длины, равной 1 м. Определить натяжения тросов
2.26(2.26) Пример Однородный стержень AB прикреплен к вертикальной стене посредством шарнира A и удерживается под углом 60° к вертикали при помощи троса BC, образующего с ним угол 30°. Определить величину и направление реакции R шарнира, если известно, что вес стержня равен 20 Н
2.27(2.27) Пример Верхний конец A однородного бруса AB, длина которого 2 м, а вес 50 Н, упирается в гладкую вертикальную стену. К нижнему концу B привязан трос BC. Найти, на каком расстоянии AC нужно прикрепить трос к стене для того, чтобы брус находился в равновесии, образуя угол BAD=45°. Найти натяжение T троса и реакцию R стены
2.28(2.28) Пример Оконная рама AB, изображенная на рисунке в разрезе, может вращаться вокруг горизонтальной оси шарнира A и своим нижним краем B свободно опирается на уступ паза. Найти реакции опор, если дано, что вес рамы, равный 89 Н, приложен к середине C рамы и AD=BD

2.29(2.29)
Балка AB поддерживается в горизонтальном положении стержнем CD; крепления в A, C и D шарнирные. Определить реакции опор A и D, если на к...
2.29(2.29) Пример Балка AB поддерживается в горизонтальном положении стержнем CD; крепления в A, C и D шарнирные. Определить реакции опор A и D, если на конце балки действует вертикальная сила F=5 кН. Размеры указаны на рисунке. Весом пренебречь
2.30(2.30) Пример Балка AB шарнирно закреплена на опоре A; у конца B она положена на катки. В середине балки, под углом 45° к ее оси, действует сила P=2 кН. Определить реакции опор для случаев а и б, взяв размеры с рисунков и пренебрегая весом балки
2.31(2.31) Пример На рисунках изображены балки AB, удерживаемые в горизонтальном положении вертикальными стержнями CD. На концах балок действуют силы F=30 кН под углом 60° к горизонту. Взяв размеры с рисунков, определить усилия S в стержнях CD и давления Q балок на стену, если крепления в A, C и D шарнирные. Весом стержней и балок пренебречь.
2.32(2.32) Пример Электрический провод ACB натянут между двумя столбами так, что образует пологую кривую, стрела провисания которой CD=f=1 м. Расстояние между столбами AB=l=40 м. Вес провода Q=0,4 кН. Определить натяжения провода: TC в средней точке, TA и TB на концах. При решении задачи считать, что вес каждой половины провода приложен на расстоянии l/4 от ближнего столба.

2.33(2.33)
Для рамы, изображенной на рисунке, определить опорные реакции RA и RD, возникающие при действии горизонтальной силы P, приложенной в точ...
2.33(2.33) Пример Для рамы, изображенной на рисунке, определить опорные реакции RA и RD, возникающие при действии горизонтальной силы P, приложенной в точке B. Весом рамы пренебречь
2.34(2.34) Пример В двигателе внутреннего сгорания площадь поршня равна 0,02 м2, длина шатуна AB=30 см, длина кривошипа BC=6 см. Давление газа в данный момент над поршнем равно P1=1000 кПа, под поршнем P2=200 кПа. Найти силу T, действующую со стороны шатуна AB на кривошип BC, вызванную перепадом давлений газа, если угол ABC=90°. Трением между поршнем и цилиндром пренебречь
2.35(2.35) Пример Воздушный шар, вес которого равен G, удерживается в равновесии тросом BC. На шар действуют подъемная сила Q и горизонтальная сила давления ветра, равная P. Определить натяжение троса в точке B и угол α
2.36(2.36) Пример Для сжатия цементного кубика M по четырем граням пользуются шарнирным механизмом, в котором стержни AB, BC и CD совпадают со сторонами квадрата ABCD, а стержни 1, 2, 3, 4 равны между собой и направлены по диагоналям того же квадрата; две равные по модулю силы P прикладываются к точкам A и D, как показано на рисунке. Определить силы N1, N2, N3, N4, сжимающие кубик, и усилия S1, S2, S3 в стержнях AB, BC и CD, если величина сил, приложенных в точках A и D, равна 50 кН

2.37(2.37)
Два трамвайных провода подвешены к поперечным проволочным канатам, из которых каждый прикреплен к двум столбам. Столбы расставлены вдоль...
2.37(2.37) Пример Два трамвайных провода подвешены к поперечным проволочным канатам, из которых каждый прикреплен к двум столбам. Столбы расставлены вдоль пути на расстоянии 40 м друг от друга. Для каждого поперечного каната расстояния AK=KL=LB=5 м; KC=LD=0,5 м. Пренебрегая весом проволочного каната, найти натяжения T1, T2 и T3 в частях его AC, CD и DB, если вес 1 м провода равен 7,5 Н
2.38(2.38) Пример К шарниру A стержневого шарнирного четырехугольника ABDC, сторона CD которого закреплена, приложена сила Q=100 Н под углом BAQ=45°. Определить величину силы R, приложенной в шарнире B под углом ABR=30° таким образом, чтобы четырехугольник ABDC был в равновесии, если углы CAQ=90°, DBR=60°
2.39(2.39) Пример Стержневой шарнирный многоугольник состоит из четырех равных стержней; концы A и E шарнирно закреплены; узлы B, C и D нагружены одинаковой вертикальной нагрузкой Q. В положении равновесия угол наклона крайних стержней к горизонту α=60°. Определить угол β наклона средних стержней к горизонту

2.40(2.40)
Для трехшарнирной арки, показанной на рисунке, определить реакции опор A и B, возникающие при действии горизонтальной силы P. Весом арки...
2.40(2.40) Пример Для трехшарнирной арки, показанной на рисунке, определить реакции опор A и B, возникающие при действии горизонтальной силы P. Весом арки пренебречь
2.41(2.41) Пример Прямолинейный однородный брус AB веса P и невесомый стержень BC с криволинейной осью произвольного очертания соединены шарнирно в точке B и так же соединены с опорами A и C, расположенными на одной горизонтали AC. Прямые AB и BC образуют с прямой AC углы α=45°. Определить реакции опор A и C
2.42(2.42) Пример Наклонная балка AB, на конец которой действует сила P, серединой B1 опирается на ребро консоли балки CD. Определить опорные реакции, пренебрегая весом балок
2.43(2.43) Пример Дана система, состоящая из четырех арок, размеры которых указаны на рисунке. Определить реакции опор A, B, C и D, возникающие при действии горизонтальной силы P
2.44(2.44) Пример Кран состоит из неподвижной башни AC и подвижной фермы BC, которая имеет шарнир C и удерживается тросом AB. Груз Q=40 кН висит на цепи, перекинутой через блок в точке B и идущей к вороту по прямой BC. Длина AC=BC. Определить, пренебрегая весом фермы и трением на блоке, натяжение T троса AB и силу P, сжимающую ферму по прямой BC, как функции угла ACB=φ

2.45(2.45)
Блок C с грузом P=18 Н может скользить вдоль гибкого троса ACB, концы которого A и B прикреплены к стенам. Расстояние между стенами 4 м;...
2.45(2.45) Пример Блок C с грузом P=18 Н может скользить вдоль гибкого троса ACB, концы которого A и B прикреплены к стенам. Расстояние между стенами 4 м; длина троса 5 м. Определить натяжение троса при равновесии блока с грузом, пренебрегая весом троса и трением блока о трос. Натяжения частей троса AC и CB одинаковы; их величина может быть определена из подобия треугольника сил и равнобедренного треугольника, одна из боковых сторон которого есть прямая BCE, а основание лежит на вертикали BD
2.46(2.46) Пример Для переправы через реку устроена люлька L, которая посредством ролика C подвешена к стальному тросу AB, закрепленному в вершинах башен A и B. Для передвижения ролика C к левому берегу служит канат CAD, перекинутый через блок A и наматываемый на ворот D; такой же канат имеется для подтягивания люльки к правому берегу. Точки A и B находятся на одной горизонтали на расстоянии AB=100 м одна от другой; длина троса ACB равна 102 м; вес люльки 50 кН. Пренебрегая весом канатов и троса, а также трением ролика о трос, определить натяжение каната CAD и натяжение троса ACB в тот момент, когда длина ветви AC=20 м

2.47(2.47)
Оконная рама AB, изображенная на рисунке в разрезе, веса 100 Н, открывается, вращаясь вокруг горизонтальной оси A, при помощи шнура BCD,...
2.47(2.47) Пример Оконная рама AB, изображенная на рисунке в разрезе, веса 100 Н, открывается, вращаясь вокруг горизонтальной оси A, при помощи шнура BCD, огибающего блоки C и D. Блок C, размерами которого пренебрегаем, и точка A лежат на одной вертикали; вес рамы приложен в ее середине; трением также пренебрегаем. Найти натяжение T шнура в зависимости от угла φ, образуемого рамой AB с горизонталью AH, предполагая AB=AC, а также наибольшее и наименьшее значения этого натяжения
2.48(2.48) Пример На круглом гладком цилиндре с горизонтальной осью и радиуса OA=0,1 м лежат два шарика A и B; вес первого 1 Н, второго 2 Н. Шарики соединены нитью AB длины 0,2 м. Определить углы φ1 и φ2, составляемые радиусами OA и OB с вертикальной прямой OC в положении равновесия, и давления N1 и N2 шариков на цилиндр в точках A и B. Размерами шариков пренебречь
2.49(2.49) Пример Гладкое кольцо A может скользить без трения по неподвижной проволоке, согнутой по окружности, расположенной в вертикальной плоскости. К кольцу подвешена гиря P и привязана веревка ABC, которая перекинута через неподвижный блок B, находящийся в высшей точке окружности; размерами блока пренебрегаем. В точке C подвешена гиря Q. Определить центральный угол φ дуги AB в положении равновесия, пренебрегая весом кольца и трением на блоке, и указать условие, при котором возможно равновесие

2.50(2.50)
На проволочной окружности ABC радиуса R, расположенной в вертикальной плоскости, помещено гладкое кольцо B, вес которого p; размерами ко...
2.50(2.50) Пример На проволочной окружности ABC радиуса R, расположенной в вертикальной плоскости, помещено гладкое кольцо B, вес которого p; размерами кольца пренебречь. Кольцо посредством упругой нити AB соединено с наивысшей точкой A окружности. Определить угол φ в положении равновесия, зная, что сила натяжения нити T пропорциональна ее относительному удлинению, причем коэффициент пропорциональности равен k. Если через L и l обозначим длину нити соответственно в состоянии растянутом и нерастянутом, то T=k(L-l)/l
2.51(2.51) Пример Точка M притягивается тремя неподвижными центрами M1(x1,y1), M2(x2,y2) и M3(x3,y3) силами, пропорциональными расстояниям: F1=k1r1, F2=k2r2, F3=k3r3, где r1=MM1, r2=MM2, r3=MM3, а k1, k2, k3 коэффициенты пропорциональности. Определить координаты x, y точки M в положении равновесия
2.52(2.52) Пример Однородная прямоугольная пластинка веса 50 Н подвешена так, что может свободно вращаться вокруг горизонтальной оси, проходящей вдоль одной из ее сторон. Равномерно дующий ветер удерживает ее в наклонном положении под углом 18° к вертикальной плоскости. Определить равнодействующую давлений, производимых ветром на пластинку перпендикулярно ее плоскости
2.53(2.53) Пример Концевая цепь цепного моста заложена в каменное основание, имеющее форму прямоугольного параллелепипеда, среднее сечение которого есть ABDC. Стороны AB=AC=5 м, удельный вес кладки 25 кН/м3; цепь расположена на диагонали BC. Найти необходимую длину a третьей стороны параллелепипеда, если натяжение цепи T=1000 кН. Основание должно быть рассчитано на опрокидывание вокруг ребра D; при расчете пренебрегаем сопротивлением грунта

2.54(2.54)
Земляная насыпь подпирается вертикальной каменной стеной AB. Найти необходимую толщину стены a, предполагая, что давление земли на стену...
2.54(2.54) Пример Земляная насыпь подпирается вертикальной каменной стеной AB. Найти необходимую толщину стены a, предполагая, что давление земли на стену направлено горизонтально, приложено на 1/3 ее высоты и равно 60 кН/м (на метр длины стены); удельный вес кладки 20 кН/м3. Стена должна быть рассчитана на опрокидывание вокруг ребра A.
2.55(2.55) Пример Водонапорная башня состоит из цилиндрического резервуара высоты 6 м и диаметра 4 м, укрепленного на четырех симметрично расположенных столбах, наклонных к горизонту; дно резервуара находится на высоте 17 м над уровнем опор; вес башни 80 кН, давление ветра рассчитывается на площадь проекции поверхности резервуара на плоскость, перпендикулярную направлению ветра, причем удельное давление ветра принимается равным 1,25 кПа. Определить необходимое расстояние AB между основаниями столбов. Расстояние AB должно быть рассчитано на опрокидывание давлением ветра при горизонтальном его направлении
3.1(3.1) Пример Определить вертикальные реакции опор, на которые свободно оперта у своих концов горизонтальная балка длины l, нагруженная равномерно по p H на единицу длины. Вес балки считать включенным в равномерно распределенную нагрузку
3.2(3.2) Пример Определить вертикальные реакции опор горизонтальной балки пролета l, если груз P помещен на ней на расстоянии x от первой опоры
3.3(3.3) Пример Однородный стержень AB, длина которого 1 м, а вес 20 Н, подвешен горизонтально на двух параллельных веревках AC и BD. К стержню в точке E на расстоянии AE=1/4 м подвешен груз P=120 Н. Определить натяжения веревок TC и TD

3.4. На горизонтальную балку, лежащую на двух опорах, расстояние между которыми равно 4 м, положены два груза, один C в 2 кН, другой D в 1 кН, так, ...
3.4 Пример На горизонтальную балку, лежащую на двух опорах, расстояние между которыми равно 4 м, положены два груза, один C в 2 кН, другой D в 1 кН, так, что реакция опоры A в два раза больше реакции опоры B, если пренебречь весом балки. Расстояние CD между грузами равно 1 м. Каково расстояние x груза C от опоры A?
3.5 Пример Трансмиссионный вал AB несет три шкива веса P1=3 кН, P2=5 кН, P3=2 кН. Размеры указаны на рисунке. Определить, на каком расстоянии x от подшипника B надо установить шкив веса P2, чтобы реакция подшипника A равнялась реакции подшипника B; весом вала пренебречь
3.6 Пример Определить силы давления мостового крана AB на рельсы в зависимости от положения тележки C, на которой укреплена лебедка. Положение тележки определить расстоянием ее середины от левого рельса в долях общей длины моста. Вес моста P=60 кН, вес тележки с поднимаемым грузом P1=40 кН
3.7 Пример Балка AB длины 10 м и веса 2 кН лежит на двух опорах C и D. Опора C отстоит от конца A на 2 м, опора D от конца B на 3 м. Конец балки A оттягивается вертикально вверх посредством перекинутого через блок троса, на котором подвешен груз Q веса 3 кН. На расстоянии 3 м от конца A к балке подвешен груз P веса 8 кН. Определить реакции опор, пренебрегая трением на блоке

3.8. Горизонтальный стержень AB веса 100 Н может вращаться вокруг неподвижной оси шарнира A. Конец B оттягивается кверху посредством перекинутой чер...
3.8 Пример Горизонтальный стержень AB веса 100 Н может вращаться вокруг неподвижной оси шарнира A. Конец B оттягивается кверху посредством перекинутой через блок нити, на которой подвешена гиря веса P=150 Н. В точке, находящейся на расстоянии 20 см от конца B, подвешен груз Q веса 500 Н. Как велика длина x стержня AB, если он находится в равновесии?
3.9 Пример Конец A горизонтального стержня AB веса 20 Н и длины 5 м оттягивается кверху посредством перекинутой через блок веревки, на которой подвешен груз веса 10 Н. Конец B таким же образом оттягивается кверху посредством груза веса 20 Н. В точках C, D, E и F, отстоящих одна от другой и от точек A и B на 1 м, подвешены грузы веса соответственно 5, 10, 15 и 20 Н. В каком месте надо подпереть стержень, чтобы он оставался в равновесии?
3.10 Пример К однородному стержню, длина которого 3 м, а вес 6 Н, подвешены 4 груза на равных расстояниях друг от друга, причем два крайних на концах стержня. Первый груз слева весит 2 Н, каждый последующий тяжелее предыдущего на 1 Н. На каком расстоянии x от левого конца нужно подвесить стержень, чтобы он оставался горизонтальным?
3.11 Пример Однородная горизонтальная балка соединена со стеной шарниром и подперта в точке, лежащей на расстоянии 160 см от стены. Длина балки 400 см, ее вес 320 Н. На расстояниях 120 см и 180 см от стены на балке лежат два груза веса 160 Н и 240 Н. Определить опорные реакции
3.12 Пример Однородная горизонтальная балка длины 4 м и веса 5 кН заложена в стену, толщина которой равна 0,5 м, так, что опирается на нее в точках A и B. Определить реакции в этих точках, если к свободному концу балки подвешен груз P веса 40 кН

3.13. Горизонтальная балка заделана одним концом в стену, а на другом конце поддерживает подшипник вала. От веса вала, шкивов и подшипника балка исп...
3.13 Пример Горизонтальная балка заделана одним концом в стену, а на другом конце поддерживает подшипник вала. От веса вала, шкивов и подшипника балка испытывает вертикальную нагрузку Q, равную 1,2 кН. Пренебрегая весом балки и считая, что нагрузка Q действует на расстоянии a=0,75 м от стены, определить реакции заделки
3.14 Пример Горизонтальная балка, поддерживающая балкон, подвергается действию равномерно распределенной нагрузки интенсивности q=2 кН/м. На балку у свободного конца передается нагрузка от колонны P=2 кН. Расстояние оси колонны от стены l=1,5 м. Определить реакции заделки.
3.15 Пример На консольную горизонтальную балку действует пара сил с моментом M=6 кН*м, а в точке C вертикальная нагрузка P=2 кН. Длина пролета балки AB=3,5 м, вынос консоли BC=0,5 м. Определить реакции опор.
3.16 Пример На двухконсольную горизонтальную балку действует пара сил (P, P), на левую консоль равномерно распределенная нагрузка интенсивности q, а в точке D правой консоли вертикальная нагрузка Q. Определить реакции опор, если P=1 кН, Q=2 кН, q=2 кН/м, a=0,8 м

3.17. На балке AB длины 10 м уложен путь для подъемного крана. Вес крана равен 50 кН, и центр тяжести его находится на оси CD; вес груза P равен 10 ...
3.17 Пример На балке AB длины 10 м уложен путь для подъемного крана. Вес крана равен 50 кН, и центр тяжести его находится на оси CD; вес груза P равен 10 кН; вес балки AB равен 30 кН; вылет крана KL=4 м; расстояние AC=3 м. Найти опорные реакции в точках A и B для такого положения крана, когда стрелка крана DL находится в одной вертикальной плоскости с балкой AB.
3.18 Пример Балка AB длины l м несет распределенную нагрузку, показанную на рисунке. Интенсивность нагрузки равна q Н/м на концах A и B балки и 2q Н/м в середине балки. Пренебрегая весом балки, найти реакции опор D и B
3.19 Пример Горизонтальная балка AC, опертая в точках B и C, несет между опорами B и C равномерно распределенную нагрузку интенсивности q Н/м; на участке AB интенсивность нагрузки уменьшается по линейному закону до нуля. Найти реакции опор B и C, пренебрегая весом балки.
3.20 Пример Прямоугольный щит AB ирригационного канала может вращаться относительно оси O. Если уровень воды невысок, щит закрыт, но, когда вода достигает некоторого уровня H, щит поворачивается вокруг оси и открывает канал. Пренебрегая трением и весом щита, определить высоту H, при которой открывается щит.
3.21 Пример Предохранительный клапан A парового котла соединен стержнем AB с однородным рычагом CD длины 50 см и веса 10 Н, который может вращаться вокруг неподвижной оси C; диаметр клапана d=6 см, плечо BC=7 см. Какой груз Q нужно подвесить к концу D рычага для того, чтобы клапан сам открывался при давлении в котле, равном 1100 кПа?

3.22. Несколько одинаковых однородных плит длины 2l сложены так, что часть каждой плиты выступает над плитой нижележащей. Определить предельные длин...
3.22 Пример Несколько одинаковых однородных плит длины 2l сложены так, что часть каждой плиты выступает над плитой нижележащей. Определить предельные длины выступающих частей, при которых плиты будут находиться в равновесии.
3.23 Пример Железнодорожный кран опирается на рельсы, расстояние между которыми равно 1,5 м. Вес тележки крана равен 30 кН, центр тяжести ее находится в точке A, лежащей на линии KL пересечения плоскости симметрии тележки с плоскостью рисунка. Вес лебедки B крана равен 10 кН, центр тяжести ее лежит в точке C на расстоянии 0,1 м от прямой KL. Вес противовеса D равен 20 кН, центр тяжести его лежит в точке E на расстоянии 1 м от прямой KL. Вес укосины FG равен 5 кН, и центр тяжести ее находится в точке H на расстоянии 1 м от прямой KL. Вылет крана LM=2 м. Определить наибольший груз Q, который не опрокинет крана.
3.24 Пример Центр тяжести передвижного рельсового крана, вес которого (без противовеса) равен P1=500 кН, находится в точке C, расстояние которой от вертикальной плоскости, проходящей через правый рельс, равно 1,5 м. Крановая тележка рассчитана на подъем груза P2=250 кН; вылет ее равен 10 м. Определить наименьший вес Q и наибольшее расстояние x центра тяжести противовеса от вертикальной плоскости, проходящей через левый рельс B так, чтобы кран не опрокинулся при всех положениях тележки как нагруженной, так и ненагруженной. Собственным весом тележки пренебречь.

3.25. Кран для загрузки материалов в мартеновскую печь состоит из лебедки A, ходящей на колесах по рельсам, уложенным на балках передвижного моста B...
3.25 Пример Кран для загрузки материалов в мартеновскую печь состоит из лебедки A, ходящей на колесах по рельсам, уложенным на балках передвижного моста B. К нижней части лебедки прикреплена опрокинутая колонна D, служащая для укрепления лопаты C. Какой вес P должна иметь лебедка с колонной, чтобы груз Q=15 кН, помещенный на лопате на расстоянии 5 м от вертикальной оси OA лебедки, не опрокидывал ее? Центр тяжести лебедки расположен на оси OA; расстояние каждого колеса от оси OA равно 1 м
3.26 Пример Подъемный кран установлен на каменном фундаменте. Вес крана Q=25 кН и приложен в центре тяжести A на расстоянии AB=0,8 м от оси крана; вылет крана CD=4 м. Фундамент имеет квадратное основание, сторона которого EF=2 м; удельный вес кладки 20 кН/м3. Вычислить наименьшую глубину фундамента, если кран предназначен для подъема тяжестей до 30 кН, причем фундамент должен быть рассчитан на опрокидывание вокруг ребра F.
3.27 Пример Магнитная стрелка подвешена на тонкой проволоке и установлена горизонтально в магнитном меридиане. Горизонтальные составляющие силы земного магнитного поля, действующие на полюсы стрелки в противоположных направлениях, равны каждая 0,02 мН, расстояние между полюсами 10 см. На какой угол нужно закрутить проволоку, чтобы стрелка составила угол 30° с магнитным меридианом, если известно, что для закручивания проволоки на угол 1° нужно приложить пару, момент которой равен 0,05 мН*см?

3.28. Два однородных стержня AB и BC одинакового поперечного сечения, из которых AB вдвое короче BC, соединенные своими концами под углом 60°, образ...
3.28 Пример Два однородных стержня AB и BC одинакового поперечного сечения, из которых AB вдвое короче BC, соединенные своими концами под углом 60°, образуют ломаный рычаг ABC. Y конца A рычаг подвешен на нити AD. Определить угол α наклона стержня BC к горизонту при равновесии рычага; поперечными размерами стержней пренебречь.
3.29 Пример Два стержня AB и OC, вес единицы длины которых равен 2p, скреплены под прямым углом в точке C. Стержень OC может вращаться вокруг горизонтальной оси O; AC=CB=a, OC=b. В точках A и B подвешены гири, веса которых P1 и P2; P2>P1. Определить угол α наклона стержня AB к горизонту в положении равновесия.
3.30 Пример Подъемный мост AB поднимается посредством двух брусьев CD длины 8 м, веса 4 кН, по одному с каждой стороны моста; длина моста AB=CE=5 м; длина цепи AC=BE; вес моста 30 кН и может считаться приложенным в середине AB. Рассчитать вес противовесов P, уравновешивающих мост.
3.31 Пример Главную часть дифференциального блока составляют два неизменно связанных между собой шкива A, ось которых подвешена к неподвижному крюку. Желоба их снабжены зубцами, захватывающими бесконечную цепь, образующую две петли, в одну из которых помещен подвижной блок B. К подвижному блоку подвешен поднимаемый груз Q, а к свисающей с большого блока ветви свободной петли приложено усилие P. Радиусы шкивов A суть R и r, причем r < R. Требуется найти зависимость усилия P от величины поднимаемого груза Q и определить это усилие в случае: Q=500 Н, R=25 см, r=24 см. Трением пренебречь.

3.32. Дифференциальный рычаг состоит из стержня AB, имеющего неподвижную опорную призму в точке C, и перекладины DE, соединенной с рычагом AB посред...
3.32 Пример Дифференциальный рычаг состоит из стержня AB, имеющего неподвижную опорную призму в точке C, и перекладины DE, соединенной с рычагом AB посредством шарнирных серег AD и EF. Груз Q=1 кН подвешен к перекладине в точке G посредством призмы. Расстояние между вертикалями, проведенными через точки C и G, равно 1 мм. Определить вес гири P, которую нужно подвесить к рычагу AB в точке H на расстоянии CH=1 м для того, чтобы уравновесить груз Q. Трением пренебречь.
3.33 Пример В шарнирном четырехзвенном механизме звено BC параллельно неподвижному звену AD. Звено AB=h перпендикулярно AD. Посредине AB приложена горизонтальная сила P. Какую горизонтальную силу Q следует приложить к звену CD в точке E, если CE=CD/4, чтобы механизм был в равновесии? Найти реакцию в шарнире D. Весом звеньев пренебречь.
3.34 Пример Для измерения больших усилий Q устроена система двух неравноплечих рычагов ABC и EDF, соединенных между собой тяжем CD. В точках B и E имеются неподвижные опоры. По рычагу EDF может передвигаться груз P веса 125 Н. Сила Q, приложенная в точке A, уравновешивается этим грузом, помещенным на расстоянии l от точки D. На какую длину x надо передвинуть для сохранения равновесия груз P при увеличении силы Q на 10 кН, если указанные на рисунке размеры соответственно равны: a=3,3 мм, b=660 мм, c=50 мм?
3.35 Пример Балка AB длины 4 м, веса 2 кН может вращаться вокруг горизонтальной оси A и опирается концом B на другую балку CD длины 3 м, веса 1,6 кН, которая подперта в точке E и соединена со стеной шарниром D. В точках M и N помещены грузы по 0,8 кН каждый. Расстояния: AM=3 м, ED=2 м, ND=1 м. Определить опорные реакции.

3.36. Консольный мост состоит из трех частей: AC, CD и DF, из которых крайние опираются каждая на две опоры. Размеры соответственно равны: AC=DF=70 ...
3.36 Пример Консольный мост состоит из трех частей: AC, CD и DF, из которых крайние опираются каждая на две опоры. Размеры соответственно равны: AC=DF=70 м, CD=20 м, AB=EF=50 м. Погонная нагрузка на мост равна 60 кН/м. Найти давления на опоры A и B, производимые этой нагрузкой.
3.37 Пример Консольный мост состоит из главной фермы AB и двух боковых ферм AC и BD. Собственный вес, приходящийся на погонный метр фермы AB, равен 15 кН, а для ферм AC и BD равен 10 кН. Определить реакции всех опор в тот момент, когда весь правый пролет FD занят поездом, вес которого можно заменить равномерно распределенной по пролету FD нагрузкой интенсивности 30 кН на погонный метр. Размеры соответственно равны: AC=BD=20 м; AE=BF=15 м; EF=50 м.
3.38 Пример Для осмотра на плаву днища понтона водоизмещением D=2000 кН его носовая оконечность поднимается краном грузоподъемности P=750 кН. Принимая удельный вес воды γ=10 кН/м3, определить наибольший подъем днища над уровнем воды h, если понтон имеет форму прямоугольного параллелепипеда длины L=20 м, ширины B=10 м. Центр тяжести понтона C лежит посередине его длины. Точка K крепления троса подъемного крана и центр тяжести C находится на одинаковом расстоянии от днища понтона. (Водоизмещение судна численно равно его весу.)

4.1. К однородному стержню AB, который может вращаться вокруг шарнира A, подвешена в точке B на веревке гиря C веса в 10 Н. От конца стержня B протя...
4.1 Пример К однородному стержню AB, который может вращаться вокруг шарнира A, подвешена в точке B на веревке гиря C веса в 10 Н. От конца стержня B протянут трос, перекинутый через блок D и поддерживающий гирю веса в 20 Н. Найти величину угла BAD=α, при котором стержень будет находиться в положении равновесия, зная, что AB=AD и вес стержня 20 Н. Трением на блоке пренебречь.
4.2 Пример Горизонтальная балка крана, длина которой равна l, у одного конца укреплена шарнирно, а у другого конца B подвешена к стене посредством тяги BC, угол наклона которой к горизонту равен α. По балке может перемещаться груз P, положение которого определяется переменным расстоянием x до шарнира A. Определить натяжение T тяги BC в зависимости от положения груза. Весом балки пренебречь.
4.3 Пример Однородный шар веса Q и радиуса a и гиря веса P подвешены на веревках в точке O, как показано на рисунке. Расстояние OM=b. Определить, какой угол φ образует прямая OM с вертикалью при равновесии.
4.4 Пример Ломаный рычаг ABC, имеющий неподвижную ось B, весит 80 Н; плечо AB=0,4 м, плечо BC=1 м, центр тяжести рычага находится на расстоянии 0,212 м от вертикальной прямой BD. В точках A и C привязаны веревки, перекинутые через блоки E и F и натягиваемые гирями веса P1=310 Н и P2=100 Н. Пренебрегая трением на блоках, определить угол BCF=φ в положении равновесия, если угол BAE=135°.

4.5. Лебедка снабжена храповым колесом диаметра d1 с собачкой A. На барабан диаметра d2, неподвижно скрепленный с колесом, намотан трос, поддерживаю...
4.5 Пример Лебедка снабжена храповым колесом диаметра d1 с собачкой A. На барабан диаметра d2, неподвижно скрепленный с колесом, намотан трос, поддерживающий груз Q. Определить давление R на ось B собачки, если дано: Q=50 Н, d1=420 мм, d2=240 мм, h=50 мм, a=120 мм. Весом собачки пренебречь.
4.6 Пример Однородная балка AB веса P опирается на две гладкие наклонные прямые CD и DE, находящиеся в вертикальной плоскости; угол наклона первой из них к горизонту равен α, второй: 90°-α. Найти угол θ наклона балки к горизонту в положении равновесия и давления ее на опорные прямые.
4.7 Пример Однородная балка веса 600 Н и длины 4 м опирается одним концом на гладкий пол, а промежуточной точкой B на столб высоты 3 м, образуя с вертикалью угол 30°. Балка удерживается в таком положении веревкой AC, протянутой по полу. Пренебрегая трением, определить натяжение веревки T и реакции RB столба и RC пола.
4.8 Пример Однородная балка AB веса 200 Н опирается на гладкий горизонтальный пол в точке B под углом 60° и, кроме того, поддерживается двумя опорами C и D. Определить реакции опор в точках B, C и D, если длина AB=3 м, CB=0,5 м, BD=1 м.