Сопромат

Механика

Детали машин

В Word'е

Качественно

Быстро

Мещерский И.В. Сборник задач по теоретической механике. Статика твердого тела. Кинематика. Динамика

Образцы оформления здесь

 

16.32 На рисунке изображен суммирующий механизм. Две параллельные рейки 1 и 2 движутся в одну сторону с постоянными скоростями v1 и v2. Между рейкам...
16.32 Пример На рисунке изображен суммирующий механизм. Две параллельные рейки 1 и 2 движутся в одну сторону с постоянными скоростями v1 и v2. Между рейками зажат диск радиуса r, катящийся по рейкам без скольжения. Показать, что скорость средней рейки 3, присоединенной к оси C диска, равна полусумме скоростей реек 1 и 2. Найти также угловую скорость диска.
16.33 Пример Подвижный блок 1 и неподвижный блок 2 соединены нерастяжимой нитью. Груз K, прикрепленный к концу этой нити, опускается по вертикали вниз по закону x=2t2 м. Определить скорости точек C, D, B и E, лежащих на ободе подвижного блока, в момент t=1 с в положении, указанном на рисунке, если радиус подвижного блока 1 равен 0,2 м, а CD⊥BE. Найти также угловую скорость блока 1.
16.34 Пример Груз K, связанный посредством нерастяжимой нити с катушкой L, опускается вертикально вниз по закону x=t2 м. При этом катушка L катится без скольжения по неподвижному горизонтальному рельсу. Определить скорости точек C, A, B, O и E катушки в момент t=1 с в положении, указанном на рисунке, а также угловую скорость катушки, если AD⊥OE, a OD=2OC=0,2 м.

16.35 Кривошип OA, вращаясь с угловой скоростью ω0=2,5 рад/с вокруг оси O неподвижного колеса радиуса r2=15 см, приводит в движение насаженную на ег...
16.35 Пример Кривошип OA, вращаясь с угловой скоростью ω0=2,5 рад/с вокруг оси O неподвижного колеса радиуса r2=15 см, приводит в движение насаженную на его конец A шестеренку радиуса r1=5 см. Определить величину и направление скоростей точек A, B, C, D и E подвижной шестеренки, если CE⊥BD.
16.36 Пример На ось O насажены зубчатое колесо K диаметра 20 см и кривошип OA длиной 20 см, не связанные между собой. С шатуном AB наглухо скреплено зубчатое колесо L диаметра 20 см, длина шатуна AB=1 м. Колесо K вращается равномерно с угловой скоростью равной 2π рад/с, и, захватывая зубья колеса L, приводит в движение шатун AB и кривошип OA. Определить угловую скорость ω1 кривошипа OA в четырех его положениях: двух горизонтальных и двух вертикальных.
16.37 Пример Кривошип OA=20 см вращается вокруг неподвижной оси O, перпендикулярной плоскости рисунка, с угловой скоростью 2 рад/с. На его конец A насажена шестеренка 2 радиуса 10 см, находящаяся во внутреннем зацеплении с неподвижным колесом 1, соосным с кривошипом OA. Определить скорости точек B, C, D и E, лежащих на ободе шестеренки 2, если BD⊥OC.
16.38 Пример Механизм Уатта состоит из коромысла O1A, которое, качаясь на оси O1, передает при помощи шатуна AB движение кривошипу OB, свободно насаженному на ось O. На той же оси O сидит колесо I; шатун AB оканчивается колесом II, наглухо связанным с шатуном. Определить угловые скорости кривошипа OB и колеса I в момент, когда α=60°, β=90°, если r1=r2=30√З см, O1A=75 см, AB=150 см и угловая скорость коромысла ω0=6 рад/с.

16.39 Планетарный механизм состоит из кривошипа O1A, приводящего в движение шатун AB, коромысла OB и колеса I радиуса r1=25 см; шатун AB оканчиваетс...
16.39 Пример Планетарный механизм состоит из кривошипа O1A, приводящего в движение шатун AB, коромысла OB и колеса I радиуса r1=25 см; шатун AB оканчивается шестеренкой II радиуса r2=10 см, наглухо с ним связанной. Определить угловую скорость кривошипа O1A и колеса I в момент, когда α=45°, β=90°, если O1A=30√2 см, AB=150 см, угловая скорость коромысла OB ω=8 рад/с.
16.40 Пример В машине с качающимся цилиндром длина кривошипа OA=r и расстояние OO1=a. Кривошип вращается с постоянной угловой скоростью ω0. Определить угловую скорость ω1 шатуна AB в зависимости от угла поворота кривошипа φ. Определить наибольшее и наименьшее значения ω1, а также значение угла φ, при котором ω1=0. (См. рисунок к задаче 16.26.)
16.41 Пример Найти приближенное выражение для проекции на координатные оси скорости любой точки M шатуна AB кривошипного механизма при равномерном вращении вала с угловой скоростью ω, предполагая, что длина кривошипа r мала по сравнению с длиной шатуна l. Положение точки M определяется ее расстоянием MB=z. Примечание. В формулу, получаемую при решении задачи, входит √(1-((r/l)sin φ)2), где φ=ωt обозначает угол BOA. Это выражение разлагаем в ряд и удерживаем только два первых члена.

17.1 Найти центроиды при движении стержня AB, указанном в задаче 16.7.

17.2 Определить подвижные и неподвижные центроиды блоков A и B полиспаста,...
17.1 Пример Найти центроиды при движении стержня AB, указанном в задаче 16.7.
17.2 Пример Определить подвижные и неподвижные центроиды блоков A и B полиспаста, радиусы которых соответственно равны rA и rB, предполагая, что обойма C движется поступательно.
17.3 Пример Найти геометрически неподвижную и подвижную центроиды шатуна AB, длина которого равна длине кривошипа: AB=OA=r.
17.4 Пример Стержень AB движется таким образом, что одна из его точек A описывает окружность радиуса r с центром в точке O, а сам стержень проходит постоянно через данную точку N, лежащую на той же окружности. Найти его центроиды.
17.5 Пример Найти неподвижную и подвижную центроиды звена CD антипараллелограмма, поставленного на большее звено AB, если AB=CD=b, AD=BC=a и a < b.

17.6 Найти неподвижную и подвижную центроиды звена BC антипараллелограмма, поставленного на меньшее звено AD, если AB=CD=b, AD=CB=a и a < b.

17.7...
17.6 Пример Найти неподвижную и подвижную центроиды звена BC антипараллелограмма, поставленного на меньшее звено AD, если AB=CD=b, AD=CB=a и a < b.
17.7 Пример Два стержня AB и DE, наглухо соединенные под прямым углом в точке F, движутся таким образом, что стержень AB всегда проходит через неподвижную точку K, а другой стержень DE через неподвижную точку N; расстояние KN=2a. Найти уравнения центроид в этом движении; оси координат указаны на рисунке.
17.8 Пример Две параллельные рейки AB и DE движутся в противоположные стороны с постоянными скоростями V1 и V2. Между рейками находится диск радиуса a, который вследствие движений реек и трения катится по ним без скольжения. Найти 1) уравнения центроид диска, а также определить 2) скорость V0 центра О диска и 3) угловую скорость ω диска; оси координат указаны на рисунке.
17.9 Пример Найти уравнения неподвижной и подвижной центроид стержня AB, который, опираясь на окружность радиуса a, концом A скользит вдоль прямой Ox, проходящей через центр этой окружности; оси координат указаны на рисунке.

17.10 Найти приближенные уравнения неподвижной и подвижной центроид шатуна AB кривошипного механизма, предполагая, что длина шатуна AB=l настолько в...
17.10 Пример Найти приближенные уравнения неподвижной и подвижной центроид шатуна AB кривошипного механизма, предполагая, что длина шатуна AB=l настолько велика по сравнению с длиной кривошипа OA=r, что для угла ABO=α можно принять sin α=α и cos α=1; оси координат указаны на рисунке.
17.11 Пример Стержень AB скользит точкой A по горизонтальной прямой и промежуточной точкой C касается круга радиуса r. Определить уравнение неподвижной и подвижной центроид стержня.
18.1 Пример Колесо катится по наклонной плоскости, образующей угол 30° с горизонтом (см. рисунок к задаче 16.2). Центр O колеса движется по закону xO=10t2 см, где x ось, направленная параллельно наклонной плоскости. К центру O колеса подвешен стержень OA=36 см, качающийся вокруг горизонтальной оси O, перпендикулярной плоскости рисунка, по закону φ=(π/3)sin(πt/6) рад. Найти ускорение конца A стержня OA в момент времени t=1 c.
18.2 Пример При движении диска радиуса r=20 см в вертикальной плоскости xy его центр C движется согласно уравнениям xC=10t м, yC=(100-4,9t2) м. При этом диск вращается вокруг горизонтальной оси C, перпендикулярной плоскости диска, с постоянной угловой скоростью ω=π/2 рад/с (см. рисунок к задаче 16.3). Определить в момент времени t=0 ускорение точки A, лежащей на ободе диска. Положение точки A на диске определяется углом φ=ωt, отсчитываемым от вертикали против хода часовой стрелки.

18.3 Сохранив условие предыдущей задачи, определить ускорение точки A в момент времени t=1 c.

18.4 Два одинаковых диска радиуса r каждый соединен...
18.3 Пример Сохранив условие предыдущей задачи, определить ускорение точки A в момент времени t=1 c.
18.4 Пример Два одинаковых диска радиуса r каждый соединены цилиндрическим шарниром A. Диск I вращается вокруг неподвижной горизонтальной оси O по закону φ=φ(t). Диск II вращается вокруг горизонтальной оси A согласно уравнению ψ=ψ(t). Оси O и A перпендикулярны плоскости рисунка. Углы φ и ψ отсчитываются от вертикали против хода часовой стрелки (см. рисунок к задаче 16.5). Найти ускорение центра C диска II.
18.5 Пример Сохранив условие предыдущей задачи, найти ускорение точки B диска II, если ACB=π/2.
18.6 Пример Линейка эллипсографа скользит концом B по оси Ox, концом A по оси Oy, AB=20 см. (См. рисунок к задаче 15.1.) Определить скорость и ускорение точки A в момент, когда угол φ наклона линейки к оси Ox равен 30°, а проекции скорости и ускорения точки B на ось x равны vBx=-20 см/с, wBx=-10 см/с2.
18.7 Пример Муфты A и B, скользящие вдоль прямолинейных образующих, соединены стержнем AB длины l. Муфта A движется с постоянной скоростью vA (см. рисунок к задаче 15.6). Определить ускорение муфты B и угловое ускорение стержня AB в положении, при котором стержень AB образует с прямой OB заданный угол φ.
18.8 Пример Найти ускорение ползуна B и мгновенный центр ускорений K шатуна AB кривошипно-ползунного механизма, изображенного на рисунке к задаче 16.41, при двух горизонтальных и одном вертикальном положениях кривошипа OA, вращающегося с постоянной угловой скоростью ω0=15 рад/с вокруг вала O. Длина кривошипа OA=40 см, длина шатуна AB=200 см.

18.9 Длина шатуна AB кривошипно-ползунного механизма в два раза больше длины кривошипа OA. Определить положение точки шатуна AB, ускорение которой н...
18.9 Пример Длина шатуна AB кривошипно-ползунного механизма в два раза больше длины кривошипа OA. Определить положение точки шатуна AB, ускорение которой направлено вдоль шатуна, в момент, когда кривошип перпендикулярен направляющей ползуна, кривошип OA вращается равномерно.
18.10 Пример Поршень D гидравлического пресса приводится в движение посредством шарнирно-рычажного механизма OABD. В положении, указанном на рисунке 16.24, рычаг OL имеет угловую скорость ω=2 рад/с и угловое ускорение ε=4 рад/с2, OA=15 см. Определить ускорение поршня D и угловое ускорение звена AB.
18.11 Пример Кривошип OA длины 20 см вращается равномерно с угловой скоростью ω0=10 рад/с и приводит в движение шатун AB длины 100 см; ползун B движется по вертикали. Найти угловую скорость и угловое ускорение шатуна, а также ускорение ползуна B в момент, когда кривошип и шатун взаимно перпендикулярны и образуют с горизонтальной осью углы α=45° и β=45°.
18.12 Пример Определить угловую скорость и угловое ускорение шатуна нецентрального кривошипного механизма, а также скорость и ускорение ползуна B при 1) горизонтальном правом и 2) вертикальном верхнем положении кривошипа OA, если последний вращается вокруг конца O с постоянной угловой скоростью ω0, причем даны: OA=r, AB=l, расстояние оси O кривошипа от линии движения ползуна OC=h (см. рисунок к задаче 16.16).

18.13 Стержень OA шарнирного четырехзвенника OABO1 вращается с постоянной угловой скоростью ω0. Определить угловую скорость, угловое ускорение стерж...
18.13 Пример Стержень OA шарнирного четырехзвенника OABO1 вращается с постоянной угловой скоростью ω0. Определить угловую скорость, угловое ускорение стержня AB, а также ускорение шарнира B в положении, указанном на рисунке, если AB=2OA=2a.
18.14 Пример Подвижное лезвие L ножниц для резки металла приводится в движение шарнирно-рычажным механизмом AOBD. В положении, указанном на рисунке к задаче 16.25, угловая скорость рычага AB равна 2 рад/с, его угловое ускорение равно 4 рад/с2, OB=5 см, O1D=10 см. Найти ускорение шарнира D и угловое ускорение звена BD.
18.15 Пример Ползун B кривошипно-ползунного механизма OAB движется по дуговой направляющей. Определить касательное и нормальное ускорения ползуна B в положении, указанном на рисунке, если OA=10 см, AB=20 см. Кривошип OA вращается, имея в данный момент угловую скорость ω=1 рад/с, угловое ускорение ε=0.
18.16 Пример Определить угловое ускорение шатуна AB механизма, рассмотренного в предыдущей задаче, если в положении, указанном на рисунке, угловое ускорение кривошипа OA равно 2 рад/с2.
18.17 Пример Точильный станок приводится в движение педалью OA=24 см, которая колеблется около оси O по закону φ=(π/6)sin(πt/2) рад (угол φ отсчитывается от горизонтали). Точильный камень K вращается вокруг оси O1 с помощью стержня AB. Оси O и O1 перпендикулярны плоскости рисунка (см. рисунок к задаче 16.12). Найти в момент времени t=0 ускорение точки B точильного камня K, если O1B=12 см. В этот момент OA и O1B расположены горизонтально, причем OAB=60°.

18.18 Антипараллелограмм состоит из двух кривошипов AB и CD одинаковой длины 40 см и шарнирно соединенного с ними стержня BC длины 20 см. Расстояние...
18.18 Пример Антипараллелограмм состоит из двух кривошипов AB и CD одинаковой длины 40 см и шарнирно соединенного с ними стержня BC длины 20 см. Расстояние между неподвижными осями A и D равно 20 см. Кривошип AB вращается с постоянной угловой скоростью ω0. Определить угловую скорость и угловое ускорение стержня BC в момент, когда угол ADC равен 90°.
18.19 Пример В машине с качающимся цилиндром, лежащим на цапфах O1, длина кривошипа OA=12 см, длина шатуна AB=60 см; расстояние между осью вала и осью цапф цилиндра OO1=60 см. Определить ускорение поршня B и радиус кривизны его траектории при двух положениях цилиндра: 1) когда кривошип и шатун взаимно перпендикулярны и 2) когда кривошип занимает положение III; угловая скорость кривошипа ω0=const=5 рад/с. (См. рисунок к задаче 16.26.)
18.20 Пример Жесткий прямой угол AME движется так, что точка A остается все время на неподвижной прямой Oy, тогда как другая сторона ME проходит через вращающийся шарнир B. Расстояние AM=OB=a. Скорость vA точки А постоянна. Определить ускорение точки M как функцию угла φ.
18.21 Пример Центр колеса, катящегося без скольжения по прямолинейному рельсу, движется равномерно со скоростью v. Определить ускорение любой точки, лежащей на ободе колеса, если его радиус равен r.
18.22 Пример Вагон трамвая движется по прямолинейному горизонтальному участку пути с замедлением w0=2 м/с2, имея в данный момент скорость v0=1 м/с. Колеса катятся по рельсам без скольжения. Найти ускорения концов двух диаметров ротора, образующих с вертикалью углы по 45°, если радиус колеса R=0,5 м, а ротора r=0,25 м.

18.23 Колесо катится без скольжения в вертикальной плоскости по наклонному прямолинейному пути. Найти ускорение концов двух взаимно перпендикулярных...
18.23 Пример Колесо катится без скольжения в вертикальной плоскости по наклонному прямолинейному пути. Найти ускорение концов двух взаимно перпендикулярных диаметров колеса, из которых один параллелен рельсу, если в рассматриваемый момент времени скорость центра колеса v0=1 м/с, ускорение центра колеса w0=3 м/с2, радиус колеса R=0,5 м.
18.24 Пример Колесо радиуса R=0,5 м катится без скольжения по прямолинейному рельсу, в данный момент центр O колеса имеет скорость v0=0,5 м/с и замедление w0=0,5 м/с2. Найти: 1) мгновенный центр ускорения колеса, 2) ускорение wC точки колеса, совпадающей с мгновенным центром C скоростей, а также 3) ускорение точки M и 4) радиус кривизны ее траектории, если OM=MC=0,5R.
18.25 Пример Подвижный блок 1 и неподвижный блок 2 соединены нерастяжимой нитью. Груз K, прикрепленный к концу этой нити, опускается вертикально вниз по закону x=2t2 м. Определить ускорение точек C, B и D, лежащих на ободе подвижного блока 1, в момент t=0,5 с в положении, указанном на рисунке, если OB⊥CD, а радиус подвижного блока 1 равен 0,2 м.
18.26 Пример Груз K, связанный посредством нерастяжимой нити с катушкой L, опускается вертикально вниз по закону x=t2 м. При этом катушка L катится без скольжения по неподвижному горизонтальному рельсу. Определить ускорения точек A, B и D, лежащих на ободе катушки, ее угловую скорость и угловое ускорение в момент времени t=0,5 с в положении, указанном на рисунке; AD⊥OB, OD=2OC=0,2 м.

18.27 Колесо радиуса R катится без скольжения по плоскости. Центр O колеса движется с постоянной скоростью vO. В точке A с ним шарнирно соединен сте...
18.27 Пример Колесо радиуса R катится без скольжения по плоскости. Центр O колеса движется с постоянной скоростью vO. В точке A с ним шарнирно соединен стержень AB длины l=3R. Другой конец стержня скользит по плоскости. В положении, указанном на рисунке, определить угловую скорость и угловое ускорение стержня AB, а также линейные скорость и ускорение его точки B.
18.28 Пример Шестеренка радиуса R=12 см приводится в движение кривошипом OA, вращающимся вокруг оси O неподвижной шестеренки с тем же радиусом; кривошип вращается с угловым ускорением ε0=8 рад/с2, имея в данный момент угловую скорость ω=2 рад/с. Определить: 1) ускорение той точки подвижной шестеренки, которая в данный момент совпадает с мгновенным центром скоростей, 2) ускорение диаметрально противоположной точки N и 3) положение мгновенного центра ускорений K.
18.29 Пример Найти положение мгновенного центра ускорений и скорость vK точки фигуры, совпадающей с ним в данный момент, а также ускорение wC точки фигуры, с которой в данный момент совпадает мгновенный центр скоростей, если шестеренка I радиуса r катится внутри неподвижного колеса II радиуса R=2r и кривошип OO1, приводящий в движение бегающую шестеренку, имеет постоянную угловую скорость ω0

18.30 Найти ускорения концов B, C, D, E двух диаметров шестеренки радиуса r1=5 см, катящейся снаружи неподвижной шестеренки радиуса r2=15 см. Подвиж...
18.30 Пример Найти ускорения концов B, C, D, E двух диаметров шестеренки радиуса r1=5 см, катящейся снаружи неподвижной шестеренки радиуса r2=15 см. Подвижная шестеренка приводится в движение при помощи кривошипа OA, вращающегося с постоянной угловой скоростью ω0=3 рад/с вокруг оси O неподвижной шестеренки; один из диаметров совпадает с линией OA, другой ей перпендикулярен. (См. рисунок к задаче 16.35.)
18.31 Пример Показать, что в момент, когда угловая скорость ω=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление отрезка равны между собой.
18.32 Пример Показать, что в момент, когда угловое ускорение ε=0, проекции ускорений концов отрезка, совершающего плоское движение, на направление, перпендикулярное отрезку, равны между собой.
18.33 Пример Ускорения концов стержня AB длины 10 см, совершающего плоское движение, направлены вдоль стержня навстречу друг другу, причем wA=10 см/с2, wB=20 см/с2. Определить угловую скорость и угловое ускорение стержня.
18.34 Пример Ускорения концов однородного стержня AB длины 12 см, совершающего плоское движение, перпендикулярны AB и направлены в одну сторону, причем wA=24 см/с2, wB=12 см/с2. Определить угловую скорость, угловое ускорение стержня, а также ускорение его центра тяжести C.
18.35 Пример Стержень AB длины 0,2 м совершает плоскопараллельное движение. Ускорения его концов A и B перпендикулярны AB, направлены в противоположные стороны и по модулю равны 2 м/с2. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.
18.36 Пример Ускорения вершин A и B треугольника ABC, совершающего плоское движение, векторно равны: wB=wA=a. Определить угловую скорость и угловое ускорение треугольника, а также ускорение вершины C.

18.37 Квадрат ABCD со стороною a совершает плоское движение в плоскости рисунка. Найти положение мгновенного центра ускорений и ускорения вершин его...
18.37 Пример Квадрат ABCD со стороною a совершает плоское движение в плоскости рисунка. Найти положение мгновенного центра ускорений и ускорения вершин его C и D, если известно, что в данный момент ускорения двух вершин A и B одинаковы по величине и равны 10 см/с2. Направление ускорений точек A и B совпадает со сторонами квадрата, как указано на рисунке.
18.38 Пример Равносторонний треугольник ABC движется в плоскости рисунка. Ускорение вершин A и B в данный момент времени равны 16 см/с2 и направлены по сторонам треугольника (см. рисунок). Определить ускорение третьей вершины C треугольника.
18.39 Пример Стержень AB длины 0,2 м движется в плоскости рисунка. Ускорение точки A wA (wA=2 м/с2) образует угол 45° с осью x, совмещенной со стержнем. Ускорение точки B wB (wB=4,42 м/с2) расположено под углом 60° к оси x. Найти угловую скорость, угловое ускорение стержня и ускорение его середины C.
18.40 Пример Квадрат ABCD со стороною a=2 см совершает плоское движение. В данный момент ускорения вершин его A и B соответственно равны по модулю wA=2 см/с2, wB=4√2 см/с2 и направлены, как указано на рисунке. Найти мгновенную угловую скорость и мгновенное угловое ускорение квадрата, а также ускорение точки C.
18.41 Пример Найти модуль ускорения середины стержня AB, если известны модули ускорений его концов: wA=10 см/с2, wB=20 см/с2 и углы, образованные ускорениями с прямой AB: α=10° и β=70°.

19.1 Ось z волчка равномерно описывает вокруг вертикали Oζ круговой конус с углом раствора 2θ. Угловая скорость вращения оси волчка вокруг оси ζ рав...
19.1 Пример Ось z волчка равномерно описывает вокруг вертикали Oζ круговой конус с углом раствора 2θ. Угловая скорость вращения оси волчка вокруг оси ζ равна ω1, а постоянная угловая скорость собственного вращения волчка равна ω. Определить величину и направление абсолютной угловой скорости Ω волчка.
19.2 Пример Артиллерийский снаряд, двигаясь в атмосфере, вращается вокруг оси z с угловой скоростью ω. Одновременно ось снаряда z вращается с угловой скоростью ω1 вокруг оси ζ, направленной по касательной к траектории центра тяжести C снаряда. Определить скорость точки M снаряда в его вращательном движении, если CM=r и отрезок CM перпендикулярен оси z; угол между осями z и ζ равен γ.
19.3 Пример Конус, высота которого h=4 см и радиус основания r=3 см, катится по плоскости без скольжения, имея неподвижную вершину в точке O. Определить угловую скорость конуса, координаты точки, вычерчивающей годограф угловой скорости, и угловое ускорение конуса, если скорость центра основания конуса vC=48 см/с=const.

19.4 Конус, вершина O которого неподвижна, катится по плоскости без скольжения. Высота конуса CO=18 см, а угол при вершине AOB=90°. Точка C, центр о...
19.4 Пример Конус, вершина O которого неподвижна, катится по плоскости без скольжения. Высота конуса CO=18 см, а угол при вершине AOB=90°. Точка C, центр основания конуса, движется равномерно и возвращается в первоначальное положение через 1 c. Определить скорость конца B диаметра AB, угловое ускорение конуса и ускорение точек A и B.
19.5 Пример Конус A обегает 120 раз в минуту неподвижный конус B. Высота конуса OO1=10 см. Определить переносную угловую скорость ωe конуса вокруг оси z, относительную угловую скорость ωr конуса вокруг оси OO1, абсолютную угловую скорость ωa и абсолютное угловое ускорение εa конуса.
19.6 Пример Сохранив условия предыдущей задачи, определить скорости и ускорения точек C и D подвижного конуса.
19.7 Пример Конус II с углом при вершине α2=45° катится без скольжения по внутренней стороне неподвижного конуса I с углом при вершине α1=90°. Высота подвижного конуса OO1=100 см. Точка O1, центр основания подвижного конуса, описывает окружность в 0,5 c. Определить переносную (вокруг оси z), относительную (вокруг оси OO1) и абсолютную угловые скорости конуса II, а также его абсолютное угловое ускорение.

19.8 Сохранив условия предыдущей задачи, определить скорости и ускорения точек O1, M1, M2 подвижного конуса.

19.9 Диск OA радиуса R=4√3 см, враща...
19.8 Пример Сохранив условия предыдущей задачи, определить скорости и ускорения точек O1, M1, M2 подвижного конуса.
19.9 Пример Диск OA радиуса R=4√3 см, вращаясь вокруг неподвижной точки O, обкатывает неподвижный конус с углом при вершине, равным 60°. Найти угловую скорость вращения диска вокруг его оси симметрии, если ускорение wA точки A диска по модулю постоянно и равно 48 см/с2.
19.10 Пример Тело движется вокруг неподвижной точки. В некоторый момент угловая скорость его изображается вектором, проекции которого на координатные оси равны √3, √5, √7. Найти в этот момент скорость v точки тела, определяемой координатами √12, √20, √28.
19.11 Пример Коническое зубчатое колесо, ось которого пересекается с геометрической осью плоской опорной шестерни в центре последней, обегает пять раз в минуту опорную шестерню. Определить угловую скорость ωr вращения колеса вокруг его оси и угловую скорость ω вращения вокруг мгновенной оси, если радиус опорной шестерни вдвое больше радиуса колеса: R=2r.
19.12 Пример Угловая скорость тела ω=7 рад/с, мгновенная ось его составляет в данный момент с неподвижными координатными осями острые углы α, β и γ. Найти величину скорости v и проекции ее vx, vy, vz на координатные оси для точки тела, координаты которой, выраженные в метрах, в данный момент равны 0, 2, 0, а также расстояние d этой точки от мгновенной оси, если cos α=2/7, cos γ=6/7.
19.13 Пример Найти уравнения мгновенной оси и величину угловой скорости ω тела, если известно, что проекции скорости точки M1(0;0;2) на координатные оси, связанные с телом, равны vx1=1 м/с, vy1=2 м/с, vz1=0, а направление скорости точки M2(0;1;2) определяется косинусами углов, образованных с осями координат: -2/3, +2/3, -1/3.

19.14 Коническое зубчатое колесо, свободно насаженное на кривошип OA, обкатывается по неподвижному коническому зубчатому основанию. Определить углов...
19.14 Пример Коническое зубчатое колесо, свободно насаженное на кривошип OA, обкатывается по неподвижному коническому зубчатому основанию. Определить угловую скорость ω и угловое ускорение ε катящегося колеса, если модули угловой скорости и углового ускорения (их направления указаны на рисунке) кривошипа OA, вращающегося вокруг неподвижной оси O1O, соответственно равны ω0 и ε0.
19.15 Пример В условиях предыдущей задачи определить ускорения точек C и B, если радиус основания равен R.
20.1 Пример Искусственная горизонтальная площадка на качающемся корабле создается с помощью карданова подвеса. Ось y1 вращения внешнего кольца параллельна продольной оси корабля; угол поворота внешнего кольца обозначается через β (угол бортовой качки). Угол поворота внутренней рамки обозначается через α. Для ориентации колец вводят три системы координат: система ξηζ связана с кораблем (ось ξ направлена к правому борту, ось η к носу корабля, ось ζ перпендикулярна палубе); система x1y1z1 связана с внешним кольцом (ось y1 совпадает с осью η); система xyz связана с внутренним кольцом (ось x совпадает с x1). Положительные направления отсчета углов видны из рисунков; при α=β=0 все системы отсчета совпадают. Определить ориентацию (соответствующие направляющие косинусы) внутреннего кольца подвеса относительно корабля.

20.2 Во втором способе установки карданова подвеса, описанного в предыдущей задаче, ось вращения внешнего кольца параллельна поперечной оси корабля....
20.2 Пример Во втором способе установки карданова подвеса, описанного в предыдущей задаче, ось вращения внешнего кольца параллельна поперечной оси корабля. При этом способе подвеса ось ξ, связанная с кораблем, совпадает с осью x1 вращения внешнего кольца, а ось y вращения внутреннего кольца совпадает с осью y1, жестко связанной с внешним кольцом. Угол поворота внешнего кольца обозначается теперь α (угол килевой качки), а угол поворота внутреннего кольца через β. Определить ориентацию внутреннего кольца подвеса относительно корабля.
20.3 Пример Положение твердого тела, имеющего одну неподвижную точку O, определяется тремя углами Эйлера: углом прецессии ψ, углом нутации θ и углом собственного вращения φ (см. рисунок). Определить направляющие косинусы подвижной системы отсчета Oxyz.

20.4 Зная скорости изменения углов Эйлера, определить угловую скорость тела и ее проекции на оси неподвижной Oξηζ и подвижной Oxyz систем отсчета.
...
20.4 Пример Зная скорости изменения углов Эйлера, определить угловую скорость тела и ее проекции на оси неподвижной Oξηζ и подвижной Oxyz систем отсчета.
20.5 Пример Для определения вращательного движения самолета с ним связывают ортогональную систему координат Cxyz, причем ось x направляется по оси самолета от хвоста к кабине летчика, ось y располагается в плоскости симметрии самолета, а ось z по размаху крыла вправо для летчика (C центр тяжести самолета). Угловые перемещения самолета относительной осей Cξηζ (горизонтальная ось ξ направляется по курсу самолета, ось η вертикально вверх, а горизонтальная ось ζ перпендикулярно осям ξ и η) определяются, как показано на рисунке, тремя самолетными углами: углом рыскания ψ, углом тангажа θ и углом крена φ. Определить ориентацию самолета (системы отсчета Cxyz) относительно трехгранника Cξηζ.
20.6 Пример Зная скорости изменения самолетных углов, определить проекции угловой скорости самолета на оси систем координат Cxyz и Cξηζ (см. рисунок к предыдущей задаче).

20.7 Для исследования качки корабля и его устойчивости на курсе вводят три корабельных угла: ψ дифферент, θ крен и φ угол рыскания, система отсчета ...
20.7 Пример Для исследования качки корабля и его устойчивости на курсе вводят три корабельных угла: ψ дифферент, θ крен и φ угол рыскания, система отсчета Cxyz жестко связана с кораблем, C центр тяжести корабля, ось x направлена от кормы к носу, ось y к левому борту, ось z перпендикулярно палубе; система координат Cξηζ ориентируется относительно курса корабля: ось ζ вертикальна, горизонтальная ось ξ направлена по курсу, горизонтальная ось η влево от курса (на рисунке изображены системы осей, введенных A.Н. Крыловым). Определить ориентацию корабля (координатных осей Cxyz) относительно трехгранника Cξηζ.
20.8 Пример Зная скорости изменения корабельных углов, определить проекции угловой скорости корабля на оси систем отсчета Cxyz и Cξηζ (см. рисунок к предыдущей задаче).
20.9 Пример Точка M (центр тяжести самолета, корабля) движется вдоль поверхности Земли, принимаемой за шар радиуса R*; восточная составляющая скорости точки равна vE, а северная vN. Определить скорость изменения широты φ и долготы λ текущего положения точки M. * Здесь и в дальнейшем сжатием Земли пренебрегаем.

20.10 Для изучения движения вблизи земной поверхности тел (самолетов, ракет, кораблей) и приборов, установленных на них, вводят подвижной координатн...
20.10 Пример Для изучения движения вблизи земной поверхности тел (самолетов, ракет, кораблей) и приборов, установленных на них, вводят подвижной координатный трехгранник трехгранник Дарбу. При географической ориентации трехгранника Дарбу Oξηζ горизонтальная ось ξ направляется на восток, горизонтальная ось η на север, ось ζ вертикально вверх. Определить проекции на оси ξ, η, ζ угловой скорости трехгранника Oξηζ, если проекции скорости его начала (точки O) относительно Земли равны vξ=vE, vη=vN, vζ=0; угловая скорость вращения Земли равна U, радиус Земли R.
20.11 Пример Трехгранник Дарбу Oxyz на поверхности Земли ориентирован не географически, как это было сделано в предыдущей задаче, а по траектории основания трехгранника относительно Земли: ось x направляется горизонтально по скорости v вершины O (центр тяжести самолета, корабля) трехгранника относительно Земли, ось у направляется горизонтально влево от оси x, а ось z вертикально вверх. Определить проекции угловой скорости трехгранника Oxyz, если скорость точки O равна и, а ее курс определяется углом ф (угол между направлением на север и относительной скоростью точки О).

20.12 Трехгранник Дарбу Оx0y0z0 на поверхности Земли ориентирован следующим образом: ось x0 направляется по абсолютной скорости V точки O (предполаг...
20.12 Пример Трехгранник Дарбу Оx0y0z0 на поверхности Земли ориентирован следующим образом: ось x0 направляется по абсолютной скорости V точки O (предполагается, что она движется по I поверхности Земли), горизонтальная ось у0 направляется влево от оси x0, ось z0 вертикальна. Определить проекции угловой скорости трехгранника Оx0y0z0 если составляющие скорости точки O относительно Земли равны VE и VN.
20.13 Пример Гироскоп направления установлен в кардановом подвесе. Система координат x1y1z1 связана с внешней рамкой (ось вращения ее вертикальна), система xyz скреплена с внутренней рамкой (ось x вращения ее горизонтальна). Ось z внутренней рамки является одновременно осью собственного вращения гироскопа. Определить: 1) ориентацию оси z вращения гироскопа относительно географически ориентированных осей ξηζ (см. задачу 20.10), если поворот внешней рамки (оси y1) отсчитывается по часовой стрелке от плоскости меридиана (плоскость ηζ) и определяется углом α, а подъем оси z над горизонтом определяется углом β; 2) проекции на оси x, y, z угловой скорости вращения трехгранника xyz, предполагая, что точка O подвеса гироскопа неподвижна относительно Земли.

20.14 В условиях предыдущей задачи определить проекции угловой скорости вращения трехгранника xyz, если северная и восточная составляющие скорости т...
20.14 Пример В условиях предыдущей задачи определить проекции угловой скорости вращения трехгранника xyz, если северная и восточная составляющие скорости точки подвеса соответственно равны vN и vE.
20.15 Пример Движение тела вокруг неподвижной точки задано углами Эйлера: φ=4t, ψ=π/2-2t, θ=π/3. Определить координаты точки, вычерчивающей годограф угловой скорости, угловую скорость и угловое ускорение тела относительно неподвижных осей x, y, z.
20.16 Пример Найти подвижный и неподвижный аксоиды внешнего колеса вагона, катящегося по горизонтальному пути, средний радиус кривизны которого равен 5 м, радиус колеса вагона 0,25 м, ширина колеи 0,80 м. Примечание. Колесо вращается вместе с вагоном вокруг вертикальной оси Oz, проходящей через центр закругления пути, и относительно вагона вокруг оси AB, т.е. вращается вокруг неподвижной точки O.

20.17 Движение тела вокруг неподвижной точки задано при помощи углов Эйлера следующими уравнениями: φ=nt, ψ=π/2+ant, θ=π/3. Определить проекции угло...
20.17 Пример Движение тела вокруг неподвижной точки задано при помощи углов Эйлера следующими уравнениями: φ=nt, ψ=π/2+ant, θ=π/3. Определить проекции угловой скорости и углового ускорения тела на неподвижные оси, если a и n постоянные величины. Указать также то значение параметра a, при котором неподвижным аксоидом тела будет плоскость Oxy.
20.18 Пример Углы Эйлера, определяющие положение тела, изменяются по закону (регулярная прецессия) ψ=ψ0+n1t, θ=θ0, φ=φ0+n2t, где ψ0, θ0, φ0 начальные значения углов, а n1 и n2 постоянные числа, равные соответствующим угловым скоростям. Определить угловую скорость ω тела, неподвижный и подвижный аксоиды.