Сопромат

Механика

Детали машин

В Word'е

Качественно

Быстро

  • Главная
  • Заказать
  • Отзывы
  • Автор
  • текст
Задачи: от 150 р. Оформление - Word. Срок - в течение дня или быстрее.
Чтобы не потерять сайт и связь, вступите в группу 
Вконтакте для связи https://vk.com/sopromat_mehanika_detali_mashin
. Сомневаетесь? Почитайте отзывы внизу страницы.

Теоретическая механика. Издание четвертое. Под редакцией проф. С.М. Тарга. 1989 г.   Примеры оформления здесь

Детали машин Сопромат Теоретическая механика Владивосток (Дальрыбвтуз) Владивосток 2006 (ДВИК) Вологда 2014 Екатеринбург 2012 Екатеринбург 2014 Красноярск 2005 Красноярск 2013 (2010) Москва 20.. Москва 2006 Москва 2012 Москва 2012+ Москва 2015 Мурманск Санкт-Петербург 2006 Санкт-Петербург 2011 Тарг 1983 Тарг 1989 Томск 2013 (ТПУ) Томск 2014 (ТГАСУ) Хабаровск 2014 (ДВГУПС) Челябинск 2013 Челябинск 2014 Челябинск 2017 (ГАУ) Юрга 2012 Разное Техническая механика Инженерная графика Начертательная геометрия Онлайн-тестирования
Теоретическая механика.
Методические указания и контрольные задания. Издание четвертое. Под редакцией проф. С.М. Тарга. Москва. Высшая школа 1989 г. Теоретическая механика. Методические указания и контрольные задания. Издание четвертое. Под редакцией проф. С.М. Тарга. Москва. Высшая школа 1989 г.
Задача С1. Пример
Жесткая рама расположенная в вертикальной плоскости(рис. С1.0 - С1.9) закреплена в точке А шарнирно, а в точке В прикреплена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках. В точке С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р = 25 кН. На раму действуют пара сил с моментом М = 100 кН•м и две силы, значения, направления и точки приложения которых указаны в таблице Задача С1. Жесткая рама расположенная в вертикальной плоскости(рис. С1.0 - С1.9) закреплена в точке А шарнирно, а в точке В прикреплена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках.
В точке С к раме привязан трос, перекинутый через блок и несущий на конце  груз весом Р = 25 кН. На раму действуют пара сил с моментом  М = 100 кН•м  и две силы, значения, направления и точки приложения которых указаны в таблице
Задача С1. Схемы. Пример
Определить реакции связей в точках А и В, вызываемые действующими силами. При окончательных расчетах принять а=0,5 м. Задача С1. Схемы. Определить реакции  связей в точках А и В, вызываемые действующими силами. При окончательных расчетах принять а=0,5 м.
Задача С2. Пример
Конструкция состоит из жесткого угольника и стержня, которые в точке С или соединены друг с другом шарнирно (рис. С2.0 - С2.5) или свободно опираются друг о друга (рис. С2.6 - С2.9). Внешними связями, наложенными на конструкцию, являются в точке А или шарнир, или жесткая заделка; в точке В или гладкая плоскость или невесомый стержень или шарнир; в точке D или невесомый стержень DD' или шарнирная опора на катках Задача С2. Конструкция состоит из жесткого угольника и стержня, которые в точке С или соединены друг с другом шарнирно (рис. С2.0 - С2.5) или свободно опираются друг о друга (рис. С2.6 - С2.9). Внешними связями, наложенными на конструкцию, являются в точке А или шарнир, или жесткая заделка; в точке В или гладкая плоскость или невесомый стержень или шарнир;	в точке D или невесомый стержень DD' или  шарнирная опора  на катках
Задача С2. Схемы. Пример
На каждую конструкцию действуют: пара сил с моментом М = 60 кН×м; равномерно распределенная нагрузка интенсивности q = 20 кН/м и еще силы, величины, направления и точки приложения которых даны. Участок, на котором действует распределенная нагрузка, указан в таблице в столбце с названием Участок, направление действия нагрузки указано в таблице Задача С2. На каждую конструкцию действуют: пара сил с моментом  М = 60 кН×м;	равномерно распределенная нагрузка интенсивности q = 20 кН/м и еще силы, величины, направления и точки приложения которых даны. Участок, на котором действует распределенная нагрузка, указан в таблице в столбце с названием Участок, направление действия нагрузки указано в таблице
Задача С3. Пример
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D. Стержни и узлы (узлы расположены в вершинах H, K, L или M прямоугольного параллелепипида) на рисунках не показаны и должны быть изображены решающим заадчу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q=100 Н. Задача С3. Конструкция состоит из жесткого угольника и стержня, которые в точке С или соединены друг с другом шарнирно (рис. С2.0 - С2.5) или свободно опираются друг о друга (рис. С2.6 - С2.9). Внешними связями, наложенными на конструкцию, являются в точке А или шарнир, или жесткая заделка; в точке В или гладкая плоскость или невесомый стержень или шарнир;	в точке D или невесомый стержень DD' или  шарнирная опора  на катках
Задача С3. Схемы. Пример
Сила P образует с положительными направлениям координатных осей x, y, z углы, равные соответственно α1=45°, β1=60°, γ1=60°, а сила Q - углы α2=60°, β2=45°, γ2=60°; направления осей x, y, z для всех рисунков показаны. Грани параллелепипида, параллельные плоскости xy, - квадраты. Диагонали других боковых граней образуют с плоскостью xy угол φ=60°, а диагональ параллелепипида образует с этой плоскостью угол θ=51°. Определить усилия в стержнях Задача С3. Схемы. Сила P образует с положительными направлениям координатных осей x, y, z углы, равные соответственно α=45°, β=60°, γ=60°, а сила Q - углы α=60°, β=45°, γ=60°; направления осей x, y, z для всех рисунков показаны. Грани параллелепипида, параллельные плоскости xy, - квадраты. Диагонали других боковых граней образуют с плоскостью xy угол φ=60°, а диагональ параллелепипида образует с этой плоскостью угол θ=51°. Определить усилия в стержнях
Задача С4. Пример
Две однородные тонкие прямоугольные плиты, жестко соединены (сваренны) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем 1 или же двумя подшипниками в точках А и В и двумя невесомыми стержнями 1 и 2. Все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1=5 кН, вес меньшей плиты P2=3 кН Задача С4. Две однородные тонкие прямоугольные  плиты, жестко соединены (сваренны) под прямым углом друг к другу и закреплены  сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником)  в точке В и невесомым  стержнем 1(рис. С4.0 - С4.7) или же двумя подшипниками в точках А и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8 - С4.9). Все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1=5 кН, вес меньшей плиты P2=3 кН. При подсчетах принять а=0,6 м
Задача К1а. Пример
Точка В движется в плоскости xy; траектория точки на рисунках показана условно. Закон движения точки задан уравнениями x=f1(t), y=f2(t), где x и y выражены в санитметрах, t - в секундах. Найти уравнение траектории точки; для момента времени t1=1 с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Зависимость x=f1(t) указана на рисунках, а зависимость y=f2(t) Задача К1а. Точка В движется в плоскости xy; траектория точки на рисунках показана условно. Закон движения точки задан уравнениями x=f1(t), y=f2(t), где x и y выражены в санитметрах, t - в секундах. Найти уравнение траектории точки; для момента времени t1=1 с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Зависимость x=f1(t) указана непосредственно на рисунках, а зависимость y=f2(t) дана а табл. К1
Задача К1б. Пример
Точка движется по дуге окружности радиуса R=2 м по закону s=f(t) (s - в метрах, t - в секундах), где s=AM - расстояние точки от некоторого начала А, измеренное вдоль дуги окружности. Определить скорость и ускорение точки в момент времени t1=1 с. Изобразить на рисунке векторы v и a, считая, что точка в этот момент находится в положении М, а положительное направление отсчета s - от А к М Задача К1б. Точка движется по дуге окружности радиуса R=2 м по закону s=f(t) (s - в метрах, t - в секундах), где s=AM - расстояние точки от некоторого начала А, измеренное вдоль дуги окружности. Определить скорость и ускорение точки в момент времени t1=1 с. Изобразить на рисунке векторы v и a, считая, что точка в этот момент находится в положении М, а положительное направление отсчета s - от А к М
Задача К2. Пример
Механизм состоит из ступенчатых колес 1−3, находящихся в зацеплении или связанных ременной передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес. Радиусы ступеней колес равны соответственно: у колеса 1 - r1 = 2 см, R1 = 4 см, у колеса 2 - r2 = 6 см, R2 = 8 см, у колеса 3 - r3 = 12 см, R3 = 16 см. На ободьях колес расположены точки A, B и C Задача К2. Механизм состоит из ступенчатых колес 1−3, находящихся в зацеплении или связанных ременной передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес. Радиусы ступеней колес равны соответственно: у колеса 1 - r1 = 2 см, R1 = 4 см, у колеса 2 - r2 = 6 см, R2 = 8 см, у колеса 3 - r3 = 12 см, R3 = 16 см. На ободьях колес расположены точки A, B и C
Задача К2. Схемы. Пример
В столбце Дано таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где φ1(t) - закон вращения колеса 1, s4(t) - закон движения рейкти 4, ω2(t) - закон изменения угловой скорости колеса 2, s - в сантиметрах, t - в секундах. Определить в момент времени t1 = 2 с указанные в таблице скорости и ускорения соответствующих точек или тел Задача К2. Схемы. В столбце Дано таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где φ1(t) - закон вращения колеса 1, s4(t) - закон движения рейкти 4, ω2(t) - закон изменения угловой скорости колеса 2, v5(t) - закон изменения скорости груза 5. s - в сантиметрах, t - в секундах. Определить в момент времени t<sub>1</sub> = 2 с указанные в таблице скорости и ускорения соответствующих точек или тел
Задача К3. Пример
Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. K3.0, K3.7) или из стержней 1, 2, 3 и ползунов В и Е (рис. K3.8, K3.9), соединённых друг с другом и с неподвижными опорами О1, О2 шарнирами; точка D находится в середине стержня AB. Длины стержней равны соответственно l1=0,4 м, l2=1,2 м, l3=1,4 м, l4=0,6 м. Положение механизма определяется углами α, β, γ, φ, θ Задача К3. Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е  (рис. K3.0, K3.7) или из стержней 1, 2, 3 и ползунов В и Е (рис. K3.8, K3.9), соединённых друг с другом и с неподвижными опорами О1, О2 шарнирами; точка D находится в середине стержня AB. Длины стержней равны соответственно l1=0,4 м, l2=1,2 м, l3=1,4 м, l4=0,6 м. Положение механизма определяется углами α, β, γ, φ, θ
Задача К3. Схемы. Пример
Значения этих углов и других заданых велечин указаны в табл. К3а (для рис. 0-4) или в табл. К3б (для рис. 5-9); при этом в табл. К3а ω1 и ω4 - велечины постоянные. Определить велечины указанные в таблице. Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки Задача К3. Схемы. Значения этих углов и других заданых велечин указаны в табл. К3а (для рис. 0-4) или в табл. К3б (для рис. 5-9); при этом в табл. К3а ω1 и ω4 - велечины постоянные.  Определить велечины указанные в таблице в столбцах Найти. Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки
Задача К4. Пример
Прямоугольная пластина (рис. K4.0-K4.4) или круглая пластина радиуса R=60 см (рис. K4.5-K4.9) вращается вокруг неподвижной оси по закону φ=f1(t), заданному в таблице К4. Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 5, 6 ось врещения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); ни рис. 3, 4, 7, 8, 9 ось вращения ОО1 лежит Задача К4. Прямоугольная пластина (рис. K4.0-K4.4) или круглая пластина радиуса R=60 см (рис. K4.5-K4.9) вращается вокруг неподвижной оси по закону φ=f1(t), заданному в таблице К4. Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 5, 6 ось врещения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); ни рис. 3, 4, 7, 8, 9 ось вращения ОО1 лежит
Задача К4. Схемы. Пример
в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой BD (рис. 0-4) или по окружности радиуса R (рис. 5-9) движется точка М; закон ее относительного движения, т.е. зависимость s=AM=f2(t) (s выражено в сантиметрах, t - в секундах), задан в таблице. На рисунках точка М показана в положении, при котором s=AM>0. Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 c Задача К4. Схемы. в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой BD (рис. 0-4) или по окружности радиуса R (рис. 5-9) движется точка М; закон ее относительного движения, т.е. зависимость s=AM=f2(t) (s выражено в сантиметрах, t - в секундах), задан в таблице. На рисунках точка М показана в положении, при котором s=AM>0. Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 c
Задача Д1. Пример
Груз D массой m, получив в точке A начальную скорость v0 движется в изогнутой трубе AВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 — Д1.9, табл. Д1). На участке AВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); Задача Д1. Груз D массой m, получив в точке A начальную скорость v0 движется в изогнутой трубе AВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 — Д1.9, табл. Д1). На участке AВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения);
Задача Д1. Схемы. Пример
трением груза о трубу на участке AВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние AВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС Задача Д1. Схемы. трением груза о трубу на участке AВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние AВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС
Задача Д2. Пример
Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный Задача Д2. Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный
Задача Д2. Схемы. Пример
к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0 Задача Д2. Схемы. к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и соединительной планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0
Задача Д3. Пример
Механическая система состоит из грузов D1 массой m1 = 18 кг и D2 массой m2 = 6 кг и из прямоугольной вертикальной плиты массой m3 = 12 кг, движущейся вдоль горизонтальных направляющих. В момент времени t0 = 0, когда система находилась в покое, под действием внутренних сил грузы начинают двигаться по желобам, представляющим собой окружности радиусов r = 0,4 м и R = 0,8 м. При движении грузов угол φ1 = ∠A2C3D1 изменяется по закону φ1 = f1(t), Задача Д3. Механическая система состоит из грузов D1 массой m1 = 18 кг и D2 массой m2 = 6 кг и из прямоугольной вертикальной плиты массой m3 = 12 кг, движущейся вдоль горизонтальных направляющих (рис. Д3.0 — Д3.9, табл. Д3). В момент времени t0 = 0, когда система находилась в покое, под действием внутренних сил грузы начинают двигаться по желобам, представляющим собой окружности радиусов r = 0,4 м и R = 0,8 м. При движении грузов угол φ1 = ∠A2C3D1 изменяется по закону φ1 = f1(t)
Задача Д3. Схемы. Пример
а угол φ2 = ∠A2C3D2 — по закону φ2 = f2(t). В табл. ДЗ эти зависимости даны отдельно, где φ выражено в радианах, t — в секундах. Считая грузы материальными точками и пренебрегая всеми сопротивлениями, определить закон изменения со временем величины, указанной в таблице в столбце Найти, т. е. x3 = t3(t) и N = f(t), где x3 — координата центра C3 плиты (зависимость x3 = f3(t) определяет закон движения плиты), N — полная нормальная реакция направляющих Задача Д3. Схемы. а угол φ2 = ∠A2C3D2 — по закону φ2 = f2(t). В табл. ДЗ эти зависимости даны отдельно для рис. 0—4 и 5—9, где φ выражено в радианах, t — в секундах. Считая грузы материальными точками и пренебрегая всеми сопротивлениями, определить закон изменения со временем величины, указанной в таблице в столбце Найти, т. е. x3 = t3(t) и N = f(t), где x3 — координата центра C3 плиты (зависимость x3 = f3(t) определяет закон движения плиты), N — полная нормальная реакция направляющих
Задача Д4. Пример
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 18 кг, движущейся вдоль горизонтальных направляющих, и груза D массой m2 = 6 кг (рис. Д4.0 — Д4.9, табл. Д4). В момент времени t0 = 0, когда скорость плиты u0 = 2 м/с, груз под действием внутренних сил начинает двигаться по желобу плиты. На рис. 0—3 желоб КЕ прямолинейный и при движении груза расстояние s = AD изменяется по закону s = f1(t), Задача Д4. Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 18 кг, движущейся вдоль горизонтальных направляющих, и груза D массой m2 = 6 кг (рис. Д4.0 — Д4.9, табл. Д4). В момент времени t0 = 0, когда скорость плиты u0 = 2 м/с, груз под действием внутренних сил начинает двигаться по желобу плиты. На рис. 0—3 желоб КЕ прямолинейный и при движении груза расстояние s = AD изменяется по закону s = f1(t),
Задача Д4. Схемы. Пример
а на рис. 4—9 желоб — окружность радиуса R = 0,8 м и при движении груза угол φ = ∟AC1D изменяется по закону φ = f2(t). В табл. Д4 эти зависимости даны отдельно для рис. 0 и 1, для рис. 2 и 3 и т. д., где s выражено в метрах, φ — в радианах» t — в секундах. Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить зависимость u = f(t), т. е. скорость плиты как функцию времени. Задача Д4. Схемы. а на рис. 4—9 желоб — окружность радиуса R = 0,8 м и при движении груза угол φ = ∟AC1D изменяется по закону ф = f2(t). В табл. Д4 эти зависимости даны отдельно для рис. 0 и 1, для рис. 2 и 3 и т. д., где s выражено в метрах, φ — в радианах» t — в секундах. Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить зависимость u = f(t), т. е. скорость плиты как функцию времени.
Задача Д5. Пример
Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2 м) массой m1 = 24 кг вращается с угловой скоростью ω0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д5.0 — Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху). В момент времени t0 = 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой m2 = 8 кг Задача Д5. Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2 м) массой m1 = 24 кг вращается с угловой скоростью ω0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д5.0 —Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху). В момент времени t0 = 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой m2 = 8 кг
Задача Д5. Схемы. Пример
по закону s = AD = F(t) где s выражено в метрах, t — в секундах. Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках). Определить, пренебрегая массой вала, зависимость ω = f(t), т. е. угловую скорость платформы, как функцию времени. На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А) Задача Д5. Схемы.  по закону s = AD = F(t) где s выражено в метрах, t — в секундах. Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках). Определить, пренебрегая массой вала, зависимость ω = f(t), т. е. угловую скорость платформы, как функцию времени.  На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А)
Задача Д6. Пример
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2 м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными Задача Д6. Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2 м, блока 4 радиуса R4= 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными
Задача Д6. Схемы. Пример
на шкив 3. К одному из тел прикреплена пружина с коэффициентом жесткости c. Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках). Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Задача Д6. Схемы. на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости c. Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках). Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м.
Задача Д7. Пример
Барабан радиуса R весом P имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом β; кроме сил на барабан действует пара с моментом М; когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости Задача Д7. Барабан радиуса R весом P имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом β; кроме сил на барабан действует пара с моментом М; когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости
Задача Д7. Схемы. Пример
с углом наклона α так, как показано на рисунках. Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. xC = f(t), и наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R. Задача Д7. Схемы. с углом наклона α так, как показано на рисунках. Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. xC = f(t), и наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.
Задача Д8. Пример
Вертикальный вал АК (рис. Д8.0 — Д8.9), вращающийся с постоянной угловой скоростью ω = 10 с-1, закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (АВ = BD = DE = ЕК = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0,1 м, а их массы m1 и m2 пропорциональны длинам), Задача Д8. Вертикальный вал АК (рис. Д8.0 — Д8.9), вращающийся с постоянной угловой скоростью ω = 10 с-1, закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (АВ = BD = DE = ЕК = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0,1 м, а их массы m1 и m2 пропорциональны длинам),
Задача Д8. Схемы. Пример
и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5—8. Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять а = 0,6 м. Задача Д8. Схемы.  и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5—8. Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять а = 0,6 м.
Задача Д9. Пример
Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами α, β, γ, φ, θ (рис. Д9.0 — Д9.9, табл. Д9а и Д9б). Длины стержней механизма (кривошипов) равны: l1 = 0,4 м, l4 = 0,6 м (размеры l2 и l3 произвольны); точка Е находится в середине соответствующего стержня. На ползун В механизма действует сила упругости пружины F; численно F = сλ, где с — коэффициент жесткости пружины, λ — ее деформация Задача Д9. Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами α, β, γ, φ, θ (рис. Д9.0 — Д9.9, табл. Д9а и Д9б). Длины стержней механизма (кривошипов) равны: l1 = 0,4 м, l4 = 0,6 м (размеры l2 и l3 произвольны); точка Е находится в середине соответствующего стержня. На ползун В механизма действует сила упругости пружины F; численно F = сλ, где с — коэффициент жесткости пружины, λ — ее деформация
Задача Д9. Схемы. Пример
Кроме того, на рис. 0 и 1 на ползун D действует сила Q, а на кривошип O1А — пара сил с моментом М; на рис. 2—9 на кривошипы O1А и O2D действуют пары сил с моментами М1 и M2. Определить, чему равна при равновесии деформация λ пружины, и указать, растянута пружина или сжата. Значения всех заданных величин приведены в табл. Д9а для рис. 0—4 и в табл. Д9б для рис. 5—9, где Q выражено в ньютонах, а М, М1, М2 — в ньютонометрах Задача Д9. Схемы.  Кроме того, на рис. 0 и 1 на ползун D действует сила Q, а на кривошип O1А — пара сил с моментом М; на рис. 2—9 на кривошипы O1А и O2D действуют пары сил с моментами М1 и M2. Определить, чему равна при равновесии деформация λ пружины, и указать, растянута пружина или сжата. Значения всех заданных величин приведены в табл. Д9а для рис. 0—4 и в табл. Д9б для рис. 5—9, где Q выражено в ньютонах, а М, М1, М2 — в ньютонометрах
Задача Д10. Пример
Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3—6, прикрепленных к этим нитям, и невесомого блока (рис. Д10.0 — Д10.9, табл. Д10). Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к одному из шкивов. Радиусы ступеней шкива 1 равны: R1 = 0,2 м, r1 — 0,1 м, а шкива 2 — R2 = 0,3 м, r2 = 0,15 м; Задача Д10. Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3—6, прикрепленных к этим нитям, и невесомого блока (рис. Д10.0 — Д10.9, табл. Д10). Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к одному из шкивов. Радиусы ступеней шкива 1 равны: R1 = 0,2 м, r1 — 0,1 м, а шкива 2 — R2 = 0,3 м, r2 = 0,15 м;
Задача Д10. Схемы. Пример
их радиусы инерции относительно осей вращения равны соответственно ρ1 = 0,1 м и ρ2 = 0,2 м. Пренебрегая трением, определить ускорение груза, имеющего больший вес; веса Р1, …, Р6 шкивов и грузов заданы в таблице в ньютонах. Грузы, веса которых равны нулю, на чертеже не изображать (шкивы 1, 2 изображать всегда как части системы). Задача Д10. Схемы.  их радиусы инерции относительно осей вращения равны соответственно ρ1 = 0,1 м и ρ2 = 0,2 м. Пренебрегая трением, определить ускорение груза, имеющего больший вес; веса Р1, …, Р6 шкивов и грузов заданы в таблице в ньютонах. Грузы, веса которых равны нулю, на чертеже не изображать (шкивы 1, 2 изображать всегда как части системы).

Гарантии (в плюсиках тоже есть текст)

Обмануть могут всегда и везде. Такова реальность. И ваши сомнения вполне понятны. Постараюсь их развеять. Извините за многобукв.
Задача мошенника получить прибыль любой ценой. Первая страница сайта-лохотрона выглядит ярко и броско. Она сверкает, сияет, обвешана рекламой, призывами и мотиваторами сверху донизу. Изо всех щелей выскакивают онлайн-консультанты, бонусы, предложения, скидки. Вас уверяют, что если не купите все сейчас и немедленно по специальной исключительно для вас цене, то конец света неминуем! И, как правило, сайт единственной страницей и ограничивается. Зачем остальные, если всё можно наобещать на первой? В общем, если сайт похож на казино или цирк с огнями, зазывалой и фотками белозубых улыбающихся клиентов модельной внешности, уже сделавших заказ, то знайте, вы в казино и попали. Крутите барабан :-)

   Посмотрите на мой сайт. В нем сотни страниц, кучи картинок, вложена уйма труда, все функционально и понятно. Почувствуйте разницу.

Если нечего предложить, то обещают золотые горы, но вот поглядеть на них можно только после оплаты. Или даются абстрактные заверения с общими примерами тех же счастливых модельных клиентов. На крайний случай бывает что-то выложено, но ощущение, что это надергано по помойкам интернета, все оформлено в разном стиле, рукописное пополам с печатным и зачастую совсем не в тему.

   Посмотрите на мой сайт. На каждой странице приложены примеры выполненных работ именно для типа задания на странице.

Если человек замыслил обман, то он прячется. На сайте мошенника, как правило, из связи есть только номер 8-800…. и форма для вашего сообщения, а обратных контактов никаких.

   Посмотрите на мой сайт. Связь через группу 
Вконтакте для связи https://vk.com/sopromat_mehanika_detali_mashin
, мессенджер 
Telegram для связи https://t.me/mehanika_sopromat_ru
или почту 
Почта для связи chertegi@mail.ru
chertegi@mail.ru.
   Клиент, довольный работой, возвращается еще, приводит друга, заказывает для товарища. Причем чем быстрее он получит качественную работу, тем выше вероятность повторного заказа. Это правило проверено многолетней практикой. Не сомневайтесь. Мой бизнес строится на репутации.

Отзывы из группы ВК

Ниже расположены самые свежие отзывы реальных людей, вы можете им написать, и, если человек ответит, пообщаться с ним. Еще больше отзывов по ссылке Отзывы. Напишите любому, пообщайся, убедитесь, что всё честно